LEESM commited on
Commit
b9eded9
1 Parent(s): 998c72b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -188
README.md CHANGED
@@ -1,199 +1,87 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
 
 
 
 
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - heegyu/open-korean-instructions
6
+ language:
7
+ - ko
8
+ tags:
9
+ - Llama-2-7b-hf
10
+ - LoRA
11
  ---
12
 
13
+ # Llama-2 model fine tuning (Seoul Cyber University TREX-Lab)
14
 
15
  <!-- Provide a quick summary of what the model is/does. -->
16
 
17
+ ## Summary
18
+ - Base Model : meta-llama/Llama-2-7b-hf
19
+ - Dataset : heegyu/open-korean-instructions (100%)
20
+ - Tuning Method
21
+ - PEFT(Parameter Efficient Fine-Tuning)
22
+ - LoRA(Low-Rank Adaptation of Large Language Models)
23
+ - Related Articles : https://arxiv.org/abs/2106.09685
24
+ - Fine-tuning the Llama2 model with a random 100% of Korean chatbot data (open Korean instructions)
25
+ - Test whether fine tuning of a large language model is possible on A30 GPU*1 (successful)
26
 
27
  <!-- Provide a longer summary of what this model is. -->
28
 
29
+ - **Developed by:** [SM.Lee of Seoul Cyber University]
30
+ - **Language(s) (NLP):** [Korean]
31
+ - **Finetuned from model :** [meta-llama/Llama-2-7b-hf]
32
+
33
+ ## Fine Tuning Detail
34
+
35
+ - alpha value 16
36
+ - r value 64 (it seems a bit big...@@)
37
+ ```
38
+ peft_config = LoraConfig(
39
+ lora_alpha=16,
40
+ lora_dropout=0.1,
41
+ r=64,
42
+ bias='none',
43
+ task_type='CAUSAL_LM'
44
+ )
45
+ ```
46
+
47
+ - Mixed precision : 4bit (bnb_4bit_use_double_quant)
48
+ ```
49
+ bnb_config = BitsAndBytesConfig(
50
+ load_in_4bit=True,
51
+ bnb_4bit_use_double_quant=True,
52
+ bnb_4bit_quant_type='nf4',
53
+ bnb_4bit_compute_dtype='float16',
54
+ )
55
+ ```
56
+
57
+ - Use SFT trainer (https://huggingface.co/docs/trl/sft_trainer)
58
+ ```
59
+ trainer = SFTTrainer(
60
+ model=peft_model,
61
+ train_dataset=dataset,
62
+ dataset_text_field='text',
63
+ max_seq_length=min(tokenizer.model_max_length, 2048),
64
+ tokenizer=tokenizer,
65
+ packing=True,
66
+ args=training_args
67
+ )
68
+ ```
69
+
70
+ ### Train Result
71
+
72
+ ```
73
+ time taken : executed in 2d 0h 17m
74
+ ```
75
+
76
+ ```
77
+ TrainOutput(global_step=2001,
78
+ training_loss=0.6940358212922347,
79
+ metrics={
80
+ 'train_runtime': 173852.2333,
81
+ 'train_samples_per_second': 0.092,
82
+ 'train_steps_per_second': 0.012,
83
+ 'train_loss': 0.6940358212922347,
84
+ 'epoch': 3.0})
85
+
86
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87