Kyleiwaniec commited on
Commit
da8c55e
·
1 Parent(s): f2a3388

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/similarity_evaluation_sts-test_results-checkpoint.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ -1,-1,0.6744054047228356,0.6750742998718,0.6631685565159673,0.6599136568909711,0.6595100643715024,0.6593615183588794,0.666057660517302,0.6624310997086206
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+
9
+ ---
10
+
11
+ # {MODEL_NAME}
12
+
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
+
15
+ <!--- Describe your model here -->
16
+
17
+ ## Usage (Sentence-Transformers)
18
+
19
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
+
21
+ ```
22
+ pip install -U sentence-transformers
23
+ ```
24
+
25
+ Then you can use the model like this:
26
+
27
+ ```python
28
+ from sentence_transformers import SentenceTransformer
29
+ sentences = ["This is an example sentence", "Each sentence is converted"]
30
+
31
+ model = SentenceTransformer('{MODEL_NAME}')
32
+ embeddings = model.encode(sentences)
33
+ print(embeddings)
34
+ ```
35
+
36
+
37
+
38
+ ## Usage (HuggingFace Transformers)
39
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
+
41
+ ```python
42
+ from transformers import AutoTokenizer, AutoModel
43
+ import torch
44
+
45
+
46
+ #Mean Pooling - Take attention mask into account for correct averaging
47
+ def mean_pooling(model_output, attention_mask):
48
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
49
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
50
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
51
+
52
+
53
+ # Sentences we want sentence embeddings for
54
+ sentences = ['This is an example sentence', 'Each sentence is converted']
55
+
56
+ # Load model from HuggingFace Hub
57
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
59
+
60
+ # Tokenize sentences
61
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
62
+
63
+ # Compute token embeddings
64
+ with torch.no_grad():
65
+ model_output = model(**encoded_input)
66
+
67
+ # Perform pooling. In this case, mean pooling.
68
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
69
+
70
+ print("Sentence embeddings:")
71
+ print(sentence_embeddings)
72
+ ```
73
+
74
+
75
+
76
+ ## Evaluation Results
77
+
78
+ <!--- Describe how your model was evaluated -->
79
+
80
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
+
82
+
83
+ ## Training
84
+ The model was trained with the parameters:
85
+
86
+ **DataLoader**:
87
+
88
+ `torch.utils.data.dataloader.DataLoader` of length 75 with parameters:
89
+ ```
90
+ {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
+ ```
92
+
93
+ **Loss**:
94
+
95
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
96
+
97
+ Parameters of the fit()-Method:
98
+ ```
99
+ {
100
+ "epochs": 20,
101
+ "evaluation_steps": 1000,
102
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
103
+ "max_grad_norm": 1,
104
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
+ "optimizer_params": {
106
+ "lr": 2e-05
107
+ },
108
+ "scheduler": "WarmupLinear",
109
+ "steps_per_epoch": null,
110
+ "warmup_steps": 150,
111
+ "weight_decay": 0.01
112
+ }
113
+ ```
114
+
115
+
116
+ ## Full Model Architecture
117
+ ```
118
+ SentenceTransformer(
119
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
120
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
+ )
122
+ ```
123
+
124
+ ## Citing & Authors
125
+
126
+ <!--- Describe where people can find more information -->
added_tokens.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "</s>": 2,
3
+ "<mask>": 50264,
4
+ "<pad>": 1,
5
+ "<s>": 0,
6
+ "<unk>": 3
7
+ }
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Ngram_size": 32768,
3
+ "_name_or_path": "/home/ec2-user/.cache/torch/sentence_transformers/Kyleiwaniec_COS_TAPT_n_RoBERTa",
4
+ "architectures": [
5
+ "RobertaModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "block_size": 128,
9
+ "bos_token_id": 0,
10
+ "classifier_dropout": null,
11
+ "eos_token_id": 2,
12
+ "gradient_checkpointing": false,
13
+ "hidden_act": "gelu",
14
+ "hidden_dropout_prob": 0.1,
15
+ "hidden_size": 1024,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 4096,
18
+ "layer_norm_eps": 1e-05,
19
+ "max_position_embeddings": 514,
20
+ "model_type": "roberta",
21
+ "num_attention_heads": 16,
22
+ "num_hidden_Ngram_layers": 1,
23
+ "num_hidden_layers": 24,
24
+ "pad_token_id": 1,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.34.0",
28
+ "type_vocab_size": 1,
29
+ "use_cache": true,
30
+ "vocab_size": 50265
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.34.0",
5
+ "pytorch": "2.1.0+cu121"
6
+ }
7
+ }
eval/similarity_evaluation_sts-dev_results.csv ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,-1,0.49697139329954926,0.4825046992439753,0.5041840862236489,0.4898646503143872,0.5298679941066685,0.5194756162488348,0.415232268926104,0.4012029141638448
3
+ 1,-1,0.6105816053705728,0.6259381642906058,0.6119457802391968,0.6329557920554172,0.6216162521489205,0.6310730138746142,0.5298615694784903,0.5316280935976543
4
+ 2,-1,0.627889232743929,0.6257670026378056,0.6088617878512252,0.6158396267753897,0.6117585196426631,0.6158396267753897,0.5946381291534514,0.599236946453763
5
+ 3,-1,0.5923863787111332,0.5997504314121638,0.5963591518282073,0.5937597735641542,0.6133336786211053,0.6124163937193842,0.5698021861330682,0.576814769936927
6
+ 4,-1,0.6403088516181896,0.6408292280842298,0.6265897721841569,0.6233707394986018,0.6064451645768036,0.6062545742185742,0.6236893460206414,0.6226860928874007
7
+ 5,-1,0.659583201557967,0.661368626420263,0.6454566441020214,0.6379194799866251,0.6454343114639428,0.645964077668238,0.6318123254688842,0.6363790251114226
8
+ 6,-1,0.658270068736161,0.6560626151834543,0.6438323301276886,0.6356943785002216,0.642272433692988,0.642198521306632,0.6443502760756001,0.6461352393210383
9
+ 7,-1,0.65964373749155,0.6586300399754584,0.6480286720463401,0.6461352393210383,0.6397026533182658,0.6425408446122326,0.6499632425608111,0.6485315024602422
10
+ 8,-1,0.6724810081502879,0.677628983436289,0.6626618661312407,0.6630802429482655,0.6478148041481298,0.6449371077514364,0.6568768022655576,0.6642783745178674
11
+ 9,-1,0.6571687288681491,0.658287716669858,0.653892509091242,0.6481891791546417,0.6423099987021536,0.6408292280842298,0.6435865611351708,0.6495584723770439
12
+ 10,-1,0.6650969725173421,0.669584385754676,0.6590824141104659,0.6545221603082518,0.6430952496897081,0.6392887732090273,0.651594735579449,0.6487026641130424
13
+ 11,-1,0.6577548003109057,0.6634225662538661,0.6539465538638317,0.6456217543626375,0.6417369524914643,0.6372348333754241,0.6441428351445646,0.6449371077514364
14
+ 12,-1,0.6495604678681547,0.645964077668238,0.6397059044066449,0.6350097318890205,0.6328643706846068,0.6300460439578125,0.6406441339960222,0.6408292280842298
15
+ 13,-1,0.6557075046885295,0.6546933219610521,0.6472685513761665,0.6394599348618276,0.6364113875396769,0.6336404386666183,0.6500737668697025,0.6519547355162477
16
+ 14,-1,0.6611204239050532,0.6565761001418552,0.6520045144594881,0.6475045325434405,0.6401604331914832,0.6387752882506266,0.6554753492516101,0.6562337768362545
17
+ 15,-1,0.6547453773324794,0.6564049384890548,0.6456277421569683,0.6432254912234336,0.6329786733946647,0.6351808935418207,0.6475071089006532,0.64716220923784
18
+ 16,-1,0.6546015024673933,0.6552068069194529,0.6465170171910348,0.6420273596538317,0.6356710916166742,0.6368925100698235,0.6481358682068578,0.6476756941962408
19
+ 17,-1,0.6562048442441608,0.6557202918778537,0.6460790408264685,0.6396310965146279,0.6345839539300447,0.63466740858342,0.6510543316716926,0.6500719573354447
20
+ 18,-1,0.6557946409978526,0.6550356452666526,0.6459793778969569,0.6399734198202285,0.63437400947207,0.6332981153610178,0.650419573877459,0.6526393821274488
21
+ 19,-1,0.6561024474465611,0.6570895851002561,0.6464077494746332,0.641513874695431,0.6352225969057199,0.6355232168474213,0.6508822963387766,0.6514412505578469
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d3071ca5c5cafe3686ead39447abf20cfcc558fb1f99045241828d5a8f774dc
3
+ size 1421571238
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
similarity_evaluation_sts-test_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ -1,-1,0.6744054047228356,0.6750742998718,0.6631685565159673,0.6599136568909711,0.6595100643715024,0.6593615183588794,0.666057660517302,0.6624310997086206
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": "<mask>",
6
+ "pad_token": "<pad>",
7
+ "sep_token": "</s>",
8
+ "unk_token": "<unk>"
9
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Ngram_vocab_size": 32768,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<pad>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "50264": {
38
+ "content": "<mask>",
39
+ "lstrip": true,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ }
45
+ },
46
+ "additional_special_tokens": [],
47
+ "bos_token": "<s>",
48
+ "clean_up_tokenization_spaces": true,
49
+ "cls_token": "<s>",
50
+ "eos_token": "</s>",
51
+ "errors": "replace",
52
+ "mask_token": "<mask>",
53
+ "model_max_length": 512,
54
+ "pad_token": "<pad>",
55
+ "sep_token": "</s>",
56
+ "tokenizer_class": "RobertaTokenizer",
57
+ "trim_offsets": true,
58
+ "unk_token": "<unk>"
59
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff