PPO LunarLander-v2 1M steps
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- sb3-ppo-LunarLander-v2.zip +3 -0
- sb3-ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- sb3-ppo-LunarLander-v2/data +99 -0
- sb3-ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- sb3-ppo-LunarLander-v2/policy.pth +3 -0
- sb3-ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- sb3-ppo-LunarLander-v2/system_info.txt +9 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 259.29 +/- 19.81
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ca02996c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ca0299750>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ca02997e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ca0299870>", "_build": "<function ActorCriticPolicy._build at 0x7f8ca0299900>", "forward": "<function ActorCriticPolicy.forward at 0x7f8ca0299990>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8ca0299a20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ca0299ab0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8ca0299b40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ca0299bd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ca0299c60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ca0299cf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8ca0284400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684285925982620032, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObzDb3hKKG6vcZruUA6mbS+IaS5yjWHOAAAgD8AAIA/9uuLPi+BNj9u7N29evaTvlgeaj0vlsO9AAAAAAAAAADm9YM967rvPsbq6bzSr4C+RkgAvG1kWL0AAAAAAAAAAE2vLz175O85PsV9vGIoAj0U8iO7m1hyvAAAgD8AAIA/My9uPLjGiLlYz3W6S+Qgtsr4jDuD1pA5AACAPwAAgD+TTIy+q8tmP+5TgT5BlIy+2PVFvtoDjj4AAAAAAAAAAE1gAT0f7Zq5/c0XOR73bjTR9/Q7KmI2uAAAgD8AAIA/c8G8PUh/g7ovBCg6YNBDNgS/Yjp6uEO5AACAPwAAgD9amLm9FGyMum3WYbopsAG1RmjPutZCgjkAAIA/AAAAAKahkr0pIF26rZVlOnfzxbIyJ4k5JpSEuQAAgD8AAIA/5qZgvUiXhrqi8D47HIMDNTWwOzle+vYzAACAPwAAgD8APuk9Y2Q5PYI8lL5mO2a+dRlUvSw5Lb0AAAAAAAAAAADYF71DPQm8NtoMvW+J6L0lwqk7TyAwvAAAgD8AAIA/M8KzPI+qCLrb9WC7rkSdNy4zo7u2mzA6AACAPwAAgD8AEBU9SFefurtOaTpl0qY1zkOfuUT7hbkAAIA/AACAP1pT5j1c33e6OKWEu0LVPTbDUCS7DfemtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGPz10tAcDOMAWyUTegDjAF0lEdAkiZOOjqOcXV9lChoBkdAQ4Yi7kGRm2gHS/BoCEdAkifHx8UmD3V9lChoBkdAYvH5HEuQIWgHTegDaAhHQJIo54IKMNt1fZQoaAZHQGPkMXJo0yhoB03oA2gIR0CSL0z67/XHdX2UKGgGR0Bj9852hZhbaAdN6ANoCEdAkjANrO7g9HV9lChoBkdAJ9sju8brC2gHS/hoCEdAkjhNIClrM3V9lChoBkdAbfHqgyuZC2gHTYoBaAhHQJI80PUaybB1fZQoaAZHQENSKJl8PWhoB0voaAhHQJI+c/oq0+l1fZQoaAZHQGXd1xbSqlxoB03oA2gIR0CSUCXVbzK+dX2UKGgGR0BjmHi3ocJdaAdN6ANoCEdAklXM81XNknV9lChoBkdAYpKfuCwr2GgHTegDaAhHQJJYNM/QjUx1fZQoaAZHQGITNTtLL6loB03oA2gIR0CSWZNpdrwfdX2UKGgGR0BDoq1G9YfXaAdL5WgIR0CSWuzY287IdX2UKGgGR0Bffj3yqdYoaAdN6ANoCEdAkmBSMkyDZnV9lChoBkdAYKwRlpXZG2gHTegDaAhHQJJtVE9dNWV1fZQoaAZHQGM1njIaLn9oB03oA2gIR0CScq8PFvQ4dX2UKGgGR0Bk7LLjghr4aAdN6ANoCEdAknNx9srNGHV9lChoBkdAZqkIk7fYSWgHTegDaAhHQJJ0wA6uGK11fZQoaAZHQGW0qcNH6M1oB03oA2gIR0CSdplN1yNodX2UKGgGR0BfVv+GXXyzaAdN6ANoCEdAknkp+x4Y8HV9lChoBkdAYSlmRvFWGWgHTegDaAhHQJJ7VUp/gBN1fZQoaAZHQGyx9a2WpqBoB009A2gIR0CSfoTsY2sJdX2UKGgGR0BmSuIdlum8aAdN6ANoCEdAkoBGBas6rHV9lChoBkdANosH4XXRPWgHS/toCEdAkocVnmJWNnV9lChoBkdAZlCnc+JP7GgHTegDaAhHQJKOUv9LpRp1fZQoaAZHQF6mdFvybx5oB03oA2gIR0CSj6owmE5AdX2UKGgGR0BiRFlbu+h5aAdN6ANoCEdAkqno95hScnV9lChoBkdAboflmOEM9mgHTZ4DaAhHQJKq2o86mwd1fZQoaAZHQFBSHBk7OmloB00CAWgIR0CSq19b5dnkdX2UKGgGR0Bgaz+PzWf9aAdN6ANoCEdAkqxKvRqoInV9lChoBkdAZAGB3iaRZGgHTegDaAhHQJKtaWkadc11fZQoaAZHQGdTJIMBp6BoB03oA2gIR0CSshfOUt7KdX2UKGgGR0BKfh7VrhzeaAdNEAFoCEdAkroCMglniHV9lChoBkdAZ0eYKIBRymgHTegDaAhHQJK6lN21Ul11fZQoaAZHQGPWdRJmNBFoB03oA2gIR0CSvymsNlRQdX2UKGgGR0BjQuSntOVPaAdN6ANoCEdAkr/yM98qnXV9lChoBkdAYpA1+iJwbWgHTegDaAhHQJLBRd8iOed1fZQoaAZHQHIbVVHWjGloB002A2gIR0CSwXJjlPrOdX2UKGgGR0Bi4VefI0ZWaAdN6ANoCEdAksMbOzIFNnV9lChoBkdAZOd1eSjgymgHTegDaAhHQJLH04cWCVd1fZQoaAZHQGNDp3xFy7xoB03oA2gIR0CSzMPSDyvtdX2UKGgGR0BFOcRL9MsZaAdNGQFoCEdAks9ZfD1oQHV9lChoBkdASQBW3jMmnmgHS85oCEdAktPg6QvHtHV9lChoBkdAZQ7a+N96TmgHTegDaAhHQJLeNWV/tpp1fZQoaAZHQGaB35eqrBFoB03oA2gIR0CS4C6IFeOXdX2UKGgGR0Boxk4WDYh/aAdN6ANoCEdAkve20AtFrnV9lChoBkdAZMPuAqd6LWgHTegDaAhHQJL4kKXv6TJ1fZQoaAZHQGC2y9VWCEpoB03oA2gIR0CS+Rsjmjj8dX2UKGgGR0BnjJaNdZ7paAdN6ANoCEdAkvtXvx6OYXV9lChoBkdAXzJLsa86FWgHTegDaAhHQJMAmxUvPC51fZQoaAZHQHLJMZYPoV5oB00QA2gIR0CTAWxy4nWrdX2UKGgGR0BwKLyrgflqaAdNrwNoCEdAkwXn3ta6jHV9lChoBkdAThcAo5PuX2gHTQgBaAhHQJMHKT+vQnh1fZQoaAZHQGMfrI5o4+9oB03oA2gIR0CTCIxS5y2hdX2UKGgGR0BdXdN34bjtaAdN6ANoCEdAkw+QFgUlA3V9lChoBkdAZcV0W/JvHmgHTegDaAhHQJMPzltCRfZ1fZQoaAZHQGdVypzcRDloB03oA2gIR0CTEhSlFc6edX2UKGgGR0BJ/nnU2DQJaAdL7GgIR0CTGD3VkMCtdX2UKGgGR0Bk6JHf/FR6aAdN6ANoCEdAkyBLrcCYC3V9lChoBkdAYdlhb4agmWgHTegDaAhHQJMj30OEug91fZQoaAZHQGEAig9Net1oB03oA2gIR0CTKAq+8Gs4dX2UKGgGR0BPxraufVZtaAdL3GgIR0CTLg7N0NjLdX2UKGgGR0Bj2psGgSOBaAdN6ANoCEdAky9cb70nPXV9lChoBkdAZuo86FM7EGgHTegDaAhHQJMwvrjYI0J1fZQoaAZHQGPgz4cm0E5oB03oA2gIR0CTReORkmQbdX2UKGgGR0BdQa15Sm65aAdN6ANoCEdAk0ajOLR8dHV9lChoBkdAYaSdI5HVgGgHTegDaAhHQJNJrWuoxYd1fZQoaAZHQGbHFEJBw/BoB03oA2gIR0CTUWlAu7HydX2UKGgGR0BkxWObRWtEaAdN6ANoCEdAk1LRJd0JW3V9lChoBkdAcSjakhzNlmgHTU8BaAhHQJNYkn8baRJ1fZQoaAZHQGCt7uc+aBtoB03oA2gIR0CTWoXvYvnKdX2UKGgGR0BnOCYb83uNaAdN6ANoCEdAk1xnmA9V3nV9lChoBkdAZZ/3yI55q2gHTegDaAhHQJNmeSMcZLt1fZQoaAZHQGQ6qe9SMtNoB03oA2gIR0CTZqzxgAp8dX2UKGgGR0Bk0xhScbzcaAdN6ANoCEdAk2iKxX4j8nV9lChoBkdAZamxRl6JImgHTegDaAhHQJNtRmnO0LN1fZQoaAZHQGyma/Zdv89oB01oAmgIR0CTdNM3ZPEbdX2UKGgGR0BlBuFDfFaTaAdN6ANoCEdAk3VuchC+lHV9lChoBkdAYJrUI9kjHGgHTegDaAhHQJN5lD9fkWB1fZQoaAZHQFz6YWcjJMhoB03oA2gIR0CTf/FMIu5CdX2UKGgGR0BgpAAXEZR9aAdN6ANoCEdAk4FFqWTouHV9lChoBkdAZyzabnX/YWgHTegDaAhHQJOdeJVKf4B1fZQoaAZHQGdZsiKR+0BoB03oA2gIR0CTnkayKNyYdX2UKGgGR0BwzfhddE9daAdNVAJoCEdAk6Z1Iy0rsnV9lChoBkdAZn1jCpFTemgHTegDaAhHQJOnm3fAKv51fZQoaAZHQGOcy0BwMphoB03oA2gIR0CTqIziCJ40dX2UKGgGR0Bkq+qHXVbzaAdN6ANoCEdAk6vl1wHZ9XV9lChoBkdAZnRU6PsAvWgHTegDaAhHQJOtNHc1wYN1fZQoaAZHQGY/kRradtloB03oA2gIR0CTrl+SKWLQdX2UKGgGR0A+DQV9F4LUaAdL/GgIR0CTtWzKs+3ZdX2UKGgGR0BiBrf3vhIfaAdN6ANoCEdAk7ZU7CBPK3V9lChoBkdAYZzvuw5eaGgHTegDaAhHQJO2g8/2TPl1fZQoaAZHQGWgrs8gZCRoB03oA2gIR0CTuENiH6/JdX2UKGgGR0BvP5Cpm29daAdNtANoCEdAk8LnYlIEsHV9lChoBkdAZ5NFQVKwp2gHTegDaAhHQJPGcjopx3p1fZQoaAZHQGlCeb/ffoBoB03oA2gIR0CTzS4IrvsrdX2UKGgGR0BwKjxWkrPMaAdNKgNoCEdAk9HUUXYUWXV9lChoBkdAY6w64Ds+mmgHTegDaAhHQJPV6wfQrtp1fZQoaAZHQGP/eLFXJYFoB03oA2gIR0CT1zKx9oexdX2UKGgGR0Bx8np/wy6+aAdNEgNoCEdAk9nJ0OmR/3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (156 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.2946165454395, "std_reward": 19.809258339007606, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-17T01:35:08.790471"}
|
sb3-ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da3228c704d2dbe9b5da01e113b58f4361650cbc151439031ecfa409a728a178
|
3 |
+
size 146747
|
sb3-ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
sb3-ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ca02996c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ca0299750>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ca02997e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ca0299870>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8ca0299900>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8ca0299990>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8ca0299a20>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ca0299ab0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8ca0299b40>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ca0299bd0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ca0299c60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ca0299cf0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8ca0284400>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1684285925982620032,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObzDb3hKKG6vcZruUA6mbS+IaS5yjWHOAAAgD8AAIA/9uuLPi+BNj9u7N29evaTvlgeaj0vlsO9AAAAAAAAAADm9YM967rvPsbq6bzSr4C+RkgAvG1kWL0AAAAAAAAAAE2vLz175O85PsV9vGIoAj0U8iO7m1hyvAAAgD8AAIA/My9uPLjGiLlYz3W6S+Qgtsr4jDuD1pA5AACAPwAAgD+TTIy+q8tmP+5TgT5BlIy+2PVFvtoDjj4AAAAAAAAAAE1gAT0f7Zq5/c0XOR73bjTR9/Q7KmI2uAAAgD8AAIA/c8G8PUh/g7ovBCg6YNBDNgS/Yjp6uEO5AACAPwAAgD9amLm9FGyMum3WYbopsAG1RmjPutZCgjkAAIA/AAAAAKahkr0pIF26rZVlOnfzxbIyJ4k5JpSEuQAAgD8AAIA/5qZgvUiXhrqi8D47HIMDNTWwOzle+vYzAACAPwAAgD8APuk9Y2Q5PYI8lL5mO2a+dRlUvSw5Lb0AAAAAAAAAAADYF71DPQm8NtoMvW+J6L0lwqk7TyAwvAAAgD8AAIA/M8KzPI+qCLrb9WC7rkSdNy4zo7u2mzA6AACAPwAAgD8AEBU9SFefurtOaTpl0qY1zkOfuUT7hbkAAIA/AACAP1pT5j1c33e6OKWEu0LVPTbDUCS7DfemtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGPz10tAcDOMAWyUTegDjAF0lEdAkiZOOjqOcXV9lChoBkdAQ4Yi7kGRm2gHS/BoCEdAkifHx8UmD3V9lChoBkdAYvH5HEuQIWgHTegDaAhHQJIo54IKMNt1fZQoaAZHQGPkMXJo0yhoB03oA2gIR0CSL0z67/XHdX2UKGgGR0Bj9852hZhbaAdN6ANoCEdAkjANrO7g9HV9lChoBkdAJ9sju8brC2gHS/hoCEdAkjhNIClrM3V9lChoBkdAbfHqgyuZC2gHTYoBaAhHQJI80PUaybB1fZQoaAZHQENSKJl8PWhoB0voaAhHQJI+c/oq0+l1fZQoaAZHQGXd1xbSqlxoB03oA2gIR0CSUCXVbzK+dX2UKGgGR0BjmHi3ocJdaAdN6ANoCEdAklXM81XNknV9lChoBkdAYpKfuCwr2GgHTegDaAhHQJJYNM/QjUx1fZQoaAZHQGITNTtLL6loB03oA2gIR0CSWZNpdrwfdX2UKGgGR0BDoq1G9YfXaAdL5WgIR0CSWuzY287IdX2UKGgGR0Bffj3yqdYoaAdN6ANoCEdAkmBSMkyDZnV9lChoBkdAYKwRlpXZG2gHTegDaAhHQJJtVE9dNWV1fZQoaAZHQGM1njIaLn9oB03oA2gIR0CScq8PFvQ4dX2UKGgGR0Bk7LLjghr4aAdN6ANoCEdAknNx9srNGHV9lChoBkdAZqkIk7fYSWgHTegDaAhHQJJ0wA6uGK11fZQoaAZHQGW0qcNH6M1oB03oA2gIR0CSdplN1yNodX2UKGgGR0BfVv+GXXyzaAdN6ANoCEdAknkp+x4Y8HV9lChoBkdAYSlmRvFWGWgHTegDaAhHQJJ7VUp/gBN1fZQoaAZHQGyx9a2WpqBoB009A2gIR0CSfoTsY2sJdX2UKGgGR0BmSuIdlum8aAdN6ANoCEdAkoBGBas6rHV9lChoBkdANosH4XXRPWgHS/toCEdAkocVnmJWNnV9lChoBkdAZlCnc+JP7GgHTegDaAhHQJKOUv9LpRp1fZQoaAZHQF6mdFvybx5oB03oA2gIR0CSj6owmE5AdX2UKGgGR0BiRFlbu+h5aAdN6ANoCEdAkqno95hScnV9lChoBkdAboflmOEM9mgHTZ4DaAhHQJKq2o86mwd1fZQoaAZHQFBSHBk7OmloB00CAWgIR0CSq19b5dnkdX2UKGgGR0Bgaz+PzWf9aAdN6ANoCEdAkqxKvRqoInV9lChoBkdAZAGB3iaRZGgHTegDaAhHQJKtaWkadc11fZQoaAZHQGdTJIMBp6BoB03oA2gIR0CSshfOUt7KdX2UKGgGR0BKfh7VrhzeaAdNEAFoCEdAkroCMglniHV9lChoBkdAZ0eYKIBRymgHTegDaAhHQJK6lN21Ul11fZQoaAZHQGPWdRJmNBFoB03oA2gIR0CSvymsNlRQdX2UKGgGR0BjQuSntOVPaAdN6ANoCEdAkr/yM98qnXV9lChoBkdAYpA1+iJwbWgHTegDaAhHQJLBRd8iOed1fZQoaAZHQHIbVVHWjGloB002A2gIR0CSwXJjlPrOdX2UKGgGR0Bi4VefI0ZWaAdN6ANoCEdAksMbOzIFNnV9lChoBkdAZOd1eSjgymgHTegDaAhHQJLH04cWCVd1fZQoaAZHQGNDp3xFy7xoB03oA2gIR0CSzMPSDyvtdX2UKGgGR0BFOcRL9MsZaAdNGQFoCEdAks9ZfD1oQHV9lChoBkdASQBW3jMmnmgHS85oCEdAktPg6QvHtHV9lChoBkdAZQ7a+N96TmgHTegDaAhHQJLeNWV/tpp1fZQoaAZHQGaB35eqrBFoB03oA2gIR0CS4C6IFeOXdX2UKGgGR0Boxk4WDYh/aAdN6ANoCEdAkve20AtFrnV9lChoBkdAZMPuAqd6LWgHTegDaAhHQJL4kKXv6TJ1fZQoaAZHQGC2y9VWCEpoB03oA2gIR0CS+Rsjmjj8dX2UKGgGR0BnjJaNdZ7paAdN6ANoCEdAkvtXvx6OYXV9lChoBkdAXzJLsa86FWgHTegDaAhHQJMAmxUvPC51fZQoaAZHQHLJMZYPoV5oB00QA2gIR0CTAWxy4nWrdX2UKGgGR0BwKLyrgflqaAdNrwNoCEdAkwXn3ta6jHV9lChoBkdAThcAo5PuX2gHTQgBaAhHQJMHKT+vQnh1fZQoaAZHQGMfrI5o4+9oB03oA2gIR0CTCIxS5y2hdX2UKGgGR0BdXdN34bjtaAdN6ANoCEdAkw+QFgUlA3V9lChoBkdAZcV0W/JvHmgHTegDaAhHQJMPzltCRfZ1fZQoaAZHQGdVypzcRDloB03oA2gIR0CTEhSlFc6edX2UKGgGR0BJ/nnU2DQJaAdL7GgIR0CTGD3VkMCtdX2UKGgGR0Bk6JHf/FR6aAdN6ANoCEdAkyBLrcCYC3V9lChoBkdAYdlhb4agmWgHTegDaAhHQJMj30OEug91fZQoaAZHQGEAig9Net1oB03oA2gIR0CTKAq+8Gs4dX2UKGgGR0BPxraufVZtaAdL3GgIR0CTLg7N0NjLdX2UKGgGR0Bj2psGgSOBaAdN6ANoCEdAky9cb70nPXV9lChoBkdAZuo86FM7EGgHTegDaAhHQJMwvrjYI0J1fZQoaAZHQGPgz4cm0E5oB03oA2gIR0CTReORkmQbdX2UKGgGR0BdQa15Sm65aAdN6ANoCEdAk0ajOLR8dHV9lChoBkdAYaSdI5HVgGgHTegDaAhHQJNJrWuoxYd1fZQoaAZHQGbHFEJBw/BoB03oA2gIR0CTUWlAu7HydX2UKGgGR0BkxWObRWtEaAdN6ANoCEdAk1LRJd0JW3V9lChoBkdAcSjakhzNlmgHTU8BaAhHQJNYkn8baRJ1fZQoaAZHQGCt7uc+aBtoB03oA2gIR0CTWoXvYvnKdX2UKGgGR0BnOCYb83uNaAdN6ANoCEdAk1xnmA9V3nV9lChoBkdAZZ/3yI55q2gHTegDaAhHQJNmeSMcZLt1fZQoaAZHQGQ6qe9SMtNoB03oA2gIR0CTZqzxgAp8dX2UKGgGR0Bk0xhScbzcaAdN6ANoCEdAk2iKxX4j8nV9lChoBkdAZamxRl6JImgHTegDaAhHQJNtRmnO0LN1fZQoaAZHQGyma/Zdv89oB01oAmgIR0CTdNM3ZPEbdX2UKGgGR0BlBuFDfFaTaAdN6ANoCEdAk3VuchC+lHV9lChoBkdAYJrUI9kjHGgHTegDaAhHQJN5lD9fkWB1fZQoaAZHQFz6YWcjJMhoB03oA2gIR0CTf/FMIu5CdX2UKGgGR0BgpAAXEZR9aAdN6ANoCEdAk4FFqWTouHV9lChoBkdAZyzabnX/YWgHTegDaAhHQJOdeJVKf4B1fZQoaAZHQGdZsiKR+0BoB03oA2gIR0CTnkayKNyYdX2UKGgGR0BwzfhddE9daAdNVAJoCEdAk6Z1Iy0rsnV9lChoBkdAZn1jCpFTemgHTegDaAhHQJOnm3fAKv51fZQoaAZHQGOcy0BwMphoB03oA2gIR0CTqIziCJ40dX2UKGgGR0Bkq+qHXVbzaAdN6ANoCEdAk6vl1wHZ9XV9lChoBkdAZnRU6PsAvWgHTegDaAhHQJOtNHc1wYN1fZQoaAZHQGY/kRradtloB03oA2gIR0CTrl+SKWLQdX2UKGgGR0A+DQV9F4LUaAdL/GgIR0CTtWzKs+3ZdX2UKGgGR0BiBrf3vhIfaAdN6ANoCEdAk7ZU7CBPK3V9lChoBkdAYZzvuw5eaGgHTegDaAhHQJO2g8/2TPl1fZQoaAZHQGWgrs8gZCRoB03oA2gIR0CTuENiH6/JdX2UKGgGR0BvP5Cpm29daAdNtANoCEdAk8LnYlIEsHV9lChoBkdAZ5NFQVKwp2gHTegDaAhHQJPGcjopx3p1fZQoaAZHQGlCeb/ffoBoB03oA2gIR0CTzS4IrvsrdX2UKGgGR0BwKjxWkrPMaAdNKgNoCEdAk9HUUXYUWXV9lChoBkdAY6w64Ds+mmgHTegDaAhHQJPV6wfQrtp1fZQoaAZHQGP/eLFXJYFoB03oA2gIR0CT1zKx9oexdX2UKGgGR0Bx8np/wy6+aAdNEgNoCEdAk9nJ0OmR/3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
sb3-ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ea8f912f49d69cde081c6d6a01311243955e422608e7f3ad2da9ae60c82ede9
|
3 |
+
size 87929
|
sb3-ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ece0807f03ffd19d14a7600516928aa1cbc36e54eb8f52eaabd71f381db57ba
|
3 |
+
size 43329
|
sb3-ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
sb3-ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|