|
import torch |
|
|
|
from typing import Any, Dict |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
path, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True |
|
) |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: |
|
|
|
inputs = data.pop("inputs", data) |
|
|
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
print(print("inputs......", inputs)) |
|
inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device) |
|
print("inputs......", inputs) |
|
|
|
|
|
|
|
t=0 |
|
for j in range(len(inputs['token_type_ids'][0])): |
|
if inputs['input_ids'][0][j]==39 and inputs['input_ids'][0][j+1]== 5584: |
|
t=0 |
|
if inputs['input_ids'][0][j]==39 and inputs['input_ids'][0][j+1]== 13359: |
|
t=1 |
|
inputs['token_type_ids'][0][j]=t |
|
|
|
|
|
|
|
if parameters is not None: |
|
outputs = self.model.generate(**inputs, **parameters) |
|
else: |
|
outputs = self.model.generate(**inputs) |
|
|
|
|
|
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return [{"generated_text": prediction}] |