LE Quoc Dat
commited on
Commit
•
b71aa35
1
Parent(s):
11119a7
Update README.md
Browse files
README.md
CHANGED
@@ -17,7 +17,8 @@ tags:
|
|
17 |
# FastApply-1.5B-v1.0
|
18 |
|
19 |
[Github: kortix-ai/fast-apply](https://github.com/kortix-ai/fast-apply)
|
20 |
-
[Dataset: Kortix/FastApply-dataset-v1.0](https://huggingface.co/datasets/Kortix/FastApply-dataset-v1.0)
|
|
|
21 |
|
22 |
## Model Details
|
23 |
|
@@ -81,7 +82,7 @@ To use the model, you can load it using the Hugging Face Transformers library:
|
|
81 |
```python
|
82 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
83 |
|
84 |
-
model = AutoModelForCausalLM.from_pretrained("Kortix/FastApply-1.5B-v1.0")
|
85 |
tokenizer = AutoTokenizer.from_pretrained("Kortix/FastApply-1.5B-v1.0")
|
86 |
|
87 |
# Prepare your input following the prompt structure mentioned above
|
@@ -104,15 +105,15 @@ Provide the complete updated code.<|im_end|>
|
|
104 |
input_text = input_text.format(
|
105 |
original_code=original_code,
|
106 |
update_snippet=update_snippet,
|
107 |
-
).strip()
|
108 |
|
109 |
# Generate the response
|
110 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
111 |
-
output = model.generate(input_ids, max_length=8192)
|
112 |
-
|
|
|
|
|
113 |
|
114 |
# Extract the updated code from the response
|
115 |
updated_code = response.split("<updated-code>")[1].split("</updated-code>")[0]
|
116 |
-
|
117 |
-
print(updated_code)
|
118 |
```
|
|
|
17 |
# FastApply-1.5B-v1.0
|
18 |
|
19 |
[Github: kortix-ai/fast-apply](https://github.com/kortix-ai/fast-apply)
|
20 |
+
[Dataset: Kortix/FastApply-dataset-v1.0](https://huggingface.co/datasets/Kortix/FastApply-dataset-v1.0)
|
21 |
+
[Try it now on 👉 Google Colab](https://colab.research.google.com/drive/1BNCab4oK-xBqwFQD4kCcjKc7BPKivkm1?usp=sharing)
|
22 |
|
23 |
## Model Details
|
24 |
|
|
|
82 |
```python
|
83 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
84 |
|
85 |
+
model = AutoModelForCausalLM.from_pretrained("Kortix/FastApply-1.5B-v1.0", device_map="auto")
|
86 |
tokenizer = AutoTokenizer.from_pretrained("Kortix/FastApply-1.5B-v1.0")
|
87 |
|
88 |
# Prepare your input following the prompt structure mentioned above
|
|
|
105 |
input_text = input_text.format(
|
106 |
original_code=original_code,
|
107 |
update_snippet=update_snippet,
|
108 |
+
).strip()
|
109 |
|
110 |
# Generate the response
|
111 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
112 |
+
output = model.generate(input_ids, max_length=8192,)
|
113 |
+
|
114 |
+
response = tokenizer.decode(output[0][len(input_ids[0]):])
|
115 |
+
print(response)
|
116 |
|
117 |
# Extract the updated code from the response
|
118 |
updated_code = response.split("<updated-code>")[1].split("</updated-code>")[0]
|
|
|
|
|
119 |
```
|