Chat / handler1.py
Vijish's picture
Rename handler.py to handler1.py
a2fb3e7 verified
raw
history blame
7.43 kB
from pydantic import BaseModel
import openai
from environs import Env
from typing import List, Dict, Any
import requests
def download_env_file(url: str, local_path: str):
response = requests.get(url)
response.raise_for_status() # Ensure we notice bad responses
with open(local_path, 'wb') as f:
f.write(response.content)
# Download the .env file
env_file_url = "https://www.dropbox.com/scl/fi/21ldek2cdsak2v3mhyy5x/openai.env?rlkey=nxdkd8l8esdy8npa3vfgvqkhp&st=s2f2zzwl&dl=1" # Adjusted URL for direct download
local_env_path = "openai.env"
download_env_file(env_file_url, local_env_path)
# Load environment variables
env = Env()
env.read_env("openai.env")
openai.api_key = env.str("OPENAI_API_KEY")
# Constants
MODEL = env.str("MODEL", "gpt-3.5-turbo")
AI_RESPONSE_TIMEOUT = env.int("AI_RESPONSE_TIMEOUT", 20)
class EndpointHandler:
def __init__(self, model_dir=None):
self.model_dir = model_dir
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
try:
if "inputs" in data: # Check if data is in Hugging Face JSON format
return self.process_hf_input(data)
else:
return self.process_json_input(data)
except ValueError as e:
return {"error": str(e)}
except Exception as e:
return {"error": str(e)}
def process_json_input(self, json_data):
if "FromUserKavasQuestions" in json_data and "Chatmood" in json_data:
prompt = self.create_conversation_starter_prompt(
json_data["FromUserKavasQuestions"],
json_data["Chatmood"]
)
starter_suggestion = self.generate_conversation_starters(prompt)
return {"conversation_starter": starter_suggestion}
elif "LastChatMessages" in json_data:
last_chat_messages = json_data["LastChatMessages"][-4:]
response = {
"version": "1.0.0-alpha",
"suggested_responses": self.get_conversation_suggestions(last_chat_messages)
}
return response
else:
raise ValueError("Invalid JSON structure.")
def process_hf_input(self, hf_data):
print("Received HF Data:", hf_data) # Debugging line
if "inputs" in hf_data:
actual_data = hf_data["inputs"]
print("Processing actual data:", actual_data) # Debugging line
return self.process_json_input(actual_data)
else:
return {"error": "Invalid Hugging Face JSON structure."}
def create_conversation_starter_prompt(self, user_questions, chatmood):
formatted_info = " ".join([f"{qa['Question']} - {qa['Answer']}" for qa in user_questions if qa['Answer']])
prompt = (f"Based on user profile info and a {chatmood} mood, "
f"generate 3 subtle and very short conversation starters. "
f"Explore various topics like travel, hobbies, movies, and not just culinary tastes. "
f"\nProfile Info: {formatted_info}")
return prompt
def generate_conversation_starters(self, prompt):
try:
response = openai.ChatCompletion.create(
model=MODEL,
messages=[{"role": "system", "content": prompt}],
temperature=0.7,
max_tokens=100,
n=1,
request_timeout=AI_RESPONSE_TIMEOUT
)
return response.choices[0].message["content"]
except openai.error.OpenAIError as e:
raise Exception(f"OpenAI API error: {str(e)}")
except Exception as e:
raise Exception(f"Unexpected error: {str(e)}")
def transform_messages(self, last_chat_messages):
t_messages = []
for chat in last_chat_messages:
if "fromUser" in chat:
from_user = chat['fromUser']
message = chat.get('touser', '')
t_messages.append(f"{from_user}: {message}")
elif "touser" in chat:
to_user = chat['touser']
message = chat.get('fromUser', '')
t_messages.append(f"{to_user}: {message}")
if t_messages and "touser" in last_chat_messages[-1]:
latest_message = t_messages[-1]
latest_message = f"Q: {latest_message}"
t_messages[-1] = latest_message
return t_messages
def generate_system_prompt(self, last_chat_messages, fromusername, tousername, zodiansign=None, chatmood=None):
prompt = ""
if not last_chat_messages or ("touser" not in last_chat_messages[-1]):
prompt = f"Suggest a casual and friendly message for {fromusername} to start a conversation with {tousername} or continue naturally, as if talking to a good friend. Strictly avoid replying to messages from {fromusername} or answering their questions."
else:
prompt = f"Suggest a warm and friendly reply for {fromusername} to respond to the last message from {tousername}, as if responding to a dear friend. Strictly avoid replying to messages from {fromusername} or answering their questions."
if zodiansign:
prompt += f" Keep in mind {tousername}'s {zodiansign} zodiac sign."
if chatmood:
prompt += f" Consider the {chatmood} mood."
return prompt
def get_conversation_suggestions(self, last_chat_messages):
fromusername = last_chat_messages[-1].get("fromusername", "")
tousername = last_chat_messages[-1].get("tousername", "")
zodiansign = last_chat_messages[-1].get("zodiansign", "")
chatmood = last_chat_messages[-1].get("Chatmood", "")
messages = self.transform_messages(last_chat_messages)
system_prompt = self.generate_system_prompt(last_chat_messages, fromusername, tousername, zodiansign, chatmood)
messages_final = [{"role": "system", "content": system_prompt}]
if messages:
messages_final.extend([{"role": "user", "content": m} for m in messages])
else:
# If there are no messages, add a default message to ensure a response is generated
default_message = f"{tousername}: Hi there!"
messages_final.append({"role": "user", "content": default_message})
try:
response = openai.ChatCompletion.create(
model=MODEL,
messages=messages_final,
temperature=0.7,
max_tokens=150,
n=3,
request_timeout=AI_RESPONSE_TIMEOUT
)
formatted_replies = []
for idx, choice in enumerate(response.choices):
formatted_replies.append({
"type": "TEXT",
"body": choice.message['content'],
"title": f"AI Reply {idx + 1}",
"confidence": 1,
})
return formatted_replies
except openai.error.Timeout as e:
formatted_reply = [{
"type": "TEXT",
"body": "Request to the AI response generator has timed out. Please try again later.",
"title": "AI Response Error",
"confidence": 1
}]
return formatted_reply