|
from pydantic import BaseModel |
|
import openai |
|
from environs import Env |
|
from typing import List, Dict, Any |
|
|
|
|
|
import requests |
|
|
|
def download_env_file(url: str, local_path: str): |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
with open(local_path, 'wb') as f: |
|
f.write(response.content) |
|
|
|
|
|
env_file_url = "https://www.dropbox.com/scl/fi/21ldek2cdsak2v3mhyy5x/openai.env?rlkey=nxdkd8l8esdy8npa3vfgvqkhp&st=s2f2zzwl&dl=1" |
|
local_env_path = "openai.env" |
|
download_env_file(env_file_url, local_env_path) |
|
|
|
|
|
env = Env() |
|
env.read_env("openai.env") |
|
openai.api_key = env.str("OPENAI_API_KEY") |
|
|
|
|
|
MODEL = env.str("MODEL", "gpt-3.5-turbo") |
|
AI_RESPONSE_TIMEOUT = env.int("AI_RESPONSE_TIMEOUT", 20) |
|
|
|
class EndpointHandler: |
|
def __init__(self, model_dir=None): |
|
self.model_dir = model_dir |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
try: |
|
if "inputs" in data: |
|
return self.process_hf_input(data) |
|
else: |
|
return self.process_json_input(data) |
|
except ValueError as e: |
|
return {"error": str(e)} |
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
def process_json_input(self, json_data): |
|
if "FromUserKavasQuestions" in json_data and "Chatmood" in json_data: |
|
prompt = self.create_conversation_starter_prompt( |
|
json_data["FromUserKavasQuestions"], |
|
json_data["Chatmood"] |
|
) |
|
starter_suggestion = self.generate_conversation_starters(prompt) |
|
return {"conversation_starter": starter_suggestion} |
|
elif "LastChatMessages" in json_data: |
|
last_chat_messages = json_data["LastChatMessages"][-4:] |
|
response = { |
|
"version": "1.0.0-alpha", |
|
"suggested_responses": self.get_conversation_suggestions(last_chat_messages) |
|
} |
|
return response |
|
else: |
|
raise ValueError("Invalid JSON structure.") |
|
|
|
def process_hf_input(self, hf_data): |
|
print("Received HF Data:", hf_data) |
|
if "inputs" in hf_data: |
|
actual_data = hf_data["inputs"] |
|
print("Processing actual data:", actual_data) |
|
return self.process_json_input(actual_data) |
|
else: |
|
return {"error": "Invalid Hugging Face JSON structure."} |
|
|
|
|
|
def create_conversation_starter_prompt(self, user_questions, chatmood): |
|
formatted_info = " ".join([f"{qa['Question']} - {qa['Answer']}" for qa in user_questions if qa['Answer']]) |
|
prompt = (f"Based on user profile info and a {chatmood} mood, " |
|
f"generate 3 subtle and very short conversation starters. " |
|
f"Explore various topics like travel, hobbies, movies, and not just culinary tastes. " |
|
f"\nProfile Info: {formatted_info}") |
|
return prompt |
|
|
|
def generate_conversation_starters(self, prompt): |
|
try: |
|
response = openai.ChatCompletion.create( |
|
model=MODEL, |
|
messages=[{"role": "system", "content": prompt}], |
|
temperature=0.7, |
|
max_tokens=100, |
|
n=1, |
|
request_timeout=AI_RESPONSE_TIMEOUT |
|
) |
|
return response.choices[0].message["content"] |
|
except openai.error.OpenAIError as e: |
|
raise Exception(f"OpenAI API error: {str(e)}") |
|
except Exception as e: |
|
raise Exception(f"Unexpected error: {str(e)}") |
|
|
|
def transform_messages(self, last_chat_messages): |
|
t_messages = [] |
|
for chat in last_chat_messages: |
|
if "fromUser" in chat: |
|
from_user = chat['fromUser'] |
|
message = chat.get('touser', '') |
|
t_messages.append(f"{from_user}: {message}") |
|
elif "touser" in chat: |
|
to_user = chat['touser'] |
|
message = chat.get('fromUser', '') |
|
t_messages.append(f"{to_user}: {message}") |
|
|
|
if t_messages and "touser" in last_chat_messages[-1]: |
|
latest_message = t_messages[-1] |
|
latest_message = f"Q: {latest_message}" |
|
t_messages[-1] = latest_message |
|
|
|
return t_messages |
|
|
|
def generate_system_prompt(self, last_chat_messages, fromusername, tousername, zodiansign=None, chatmood=None): |
|
prompt = "" |
|
if not last_chat_messages or ("touser" not in last_chat_messages[-1]): |
|
prompt = f"Suggest a casual and friendly message for {fromusername} to start a conversation with {tousername} or continue naturally, as if talking to a good friend. Strictly avoid replying to messages from {fromusername} or answering their questions." |
|
else: |
|
prompt = f"Suggest a warm and friendly reply for {fromusername} to respond to the last message from {tousername}, as if responding to a dear friend. Strictly avoid replying to messages from {fromusername} or answering their questions." |
|
|
|
if zodiansign: |
|
prompt += f" Keep in mind {tousername}'s {zodiansign} zodiac sign." |
|
if chatmood: |
|
prompt += f" Consider the {chatmood} mood." |
|
|
|
return prompt |
|
|
|
def get_conversation_suggestions(self, last_chat_messages): |
|
fromusername = last_chat_messages[-1].get("fromusername", "") |
|
tousername = last_chat_messages[-1].get("tousername", "") |
|
zodiansign = last_chat_messages[-1].get("zodiansign", "") |
|
chatmood = last_chat_messages[-1].get("Chatmood", "") |
|
|
|
messages = self.transform_messages(last_chat_messages) |
|
|
|
system_prompt = self.generate_system_prompt(last_chat_messages, fromusername, tousername, zodiansign, chatmood) |
|
messages_final = [{"role": "system", "content": system_prompt}] |
|
|
|
if messages: |
|
messages_final.extend([{"role": "user", "content": m} for m in messages]) |
|
else: |
|
|
|
default_message = f"{tousername}: Hi there!" |
|
messages_final.append({"role": "user", "content": default_message}) |
|
|
|
try: |
|
response = openai.ChatCompletion.create( |
|
model=MODEL, |
|
messages=messages_final, |
|
temperature=0.7, |
|
max_tokens=150, |
|
n=3, |
|
request_timeout=AI_RESPONSE_TIMEOUT |
|
) |
|
|
|
formatted_replies = [] |
|
for idx, choice in enumerate(response.choices): |
|
formatted_replies.append({ |
|
"type": "TEXT", |
|
"body": choice.message['content'], |
|
"title": f"AI Reply {idx + 1}", |
|
"confidence": 1, |
|
}) |
|
|
|
return formatted_replies |
|
|
|
except openai.error.Timeout as e: |
|
formatted_reply = [{ |
|
"type": "TEXT", |
|
"body": "Request to the AI response generator has timed out. Please try again later.", |
|
"title": "AI Response Error", |
|
"confidence": 1 |
|
}] |
|
return formatted_reply |