File size: 1,885 Bytes
1c2ce1e d023078 1c2ce1e d023078 1c2ce1e d023078 1c2ce1e d023078 b657463 d023078 9eba5d2 d023078 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
datasets:
- KomeijiForce/Text2Emoji
language:
- en
metrics:
- bertscore
pipeline_tag: text2text-generation
---
# EmojiLM
This is a [T5](https://huggingface.co/t5-base) model pre-trained on the [Text2Emoji](https://huggingface.co/datasets/KomeijiForce/Text2Emoji) dataset to translate setences into series of emojis.
For instance, "I love pizza" will be translated into "ππ".
An example implementation for translation:
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
path = "KomeijiForce/t5-base-emojilm"
tokenizer = T5Tokenizer.from_pretrained(path)
generator = T5ForConditionalGeneration.from_pretrained(path)
prefix = "translate into emojis:"
sentence = "I travel to enjoy the taste of sushi!"
inputs = tokenizer(prefix+" "+sentence, return_tensors="pt")
generated_ids = generator.generate(inputs["input_ids"], num_beams=4, do_sample=True, max_length=100)
decoded = tokenizer.decode(generated_ids[0], skip_special_tokens=True).replace(" ", "")
print(decoded)
```
You will probably get some output like "π―π΅π£π±π".
If you find this model & dataset resource useful, please consider cite our paper:
```
@article{DBLP:journals/corr/abs-2311-01751,
author = {Letian Peng and
Zilong Wang and
Hang Liu and
Zihan Wang and
Jingbo Shang},
title = {EmojiLM: Modeling the New Emoji Language},
journal = {CoRR},
volume = {abs/2311.01751},
year = {2023},
url = {https://doi.org/10.48550/arXiv.2311.01751},
doi = {10.48550/ARXIV.2311.01751},
eprinttype = {arXiv},
eprint = {2311.01751},
timestamp = {Tue, 07 Nov 2023 18:17:14 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2311-01751.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |