File size: 1,128 Bytes
f643899
 
 
 
 
 
 
 
0c1afe3
f643899
 
9c7558d
f643899
 
 
 
 
 
 
8d33077
f643899
 
 
 
 
 
5f1d37e
f643899
 
4321acf
 
bde9396
4321acf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
---
language:
- "zh"
tags:
- "chinese"
- "token-classification"
- "pos"
- "dependency-parsing"
base_model: KoichiYasuoka/roberta-base-chinese-upos
datasets:
- "universal_dependencies"
license: "cc-by-sa-4.0"
pipeline_tag: "token-classification"
---

# roberta-base-chinese-ud-goeswith

## Model Description

This is a RoBERTa model pre-trained on Chinese Wikipedia texts (both simplified and traditional) for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [roberta-base-chinese-upos](https://huggingface.co/KoichiYasuoka/roberta-base-chinese-upos).

## How to Use

```py
from transformers import pipeline
nlp=pipeline("universal-dependencies","KoichiYasuoka/roberta-base-chinese-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
print(nlp("我把这本书看完了"))
```

## Reference

Koichi Yasuoka: [Sequence-Labeling RoBERTa Model for Dependency-Parsing in Classical Chinese and Its Application to Vietnamese and Thai](https://doi.org/10.1109/ICBIR57571.2023.10147628), ICBIR 2023: 8th International Conference on Business and Industrial Research (May 2023), pp.169-173.