|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask |
|
from transformers.modeling_outputs import BaseModelOutput, MaskedLMOutput, SequenceClassifierOutput, TokenClassifierOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
logging, |
|
) |
|
import importlib |
|
is_triton_available = lambda: importlib.util.find_spec("triton") is not None |
|
from .configuration_modernbert import ModernBertConfig |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func |
|
from flash_attn.layers.rotary import RotaryEmbedding |
|
from flash_attn.ops.triton.rotary import apply_rotary |
|
else: |
|
RotaryEmbedding = object |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "answerdotai/ModernBERT-base" |
|
_CONFIG_FOR_DOC = "ModernBertConfig" |
|
|
|
|
|
class ApplyRotaryEmbUnpad(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
qkv, |
|
cos, |
|
sin, |
|
cu_seqlens: Optional[torch.Tensor] = None, |
|
max_seqlen: Optional[int] = None, |
|
): |
|
|
|
qkv = qkv.contiguous() |
|
total_nnz, _three, _nheads, headdim = qkv.shape |
|
|
|
|
|
|
|
qk = qkv[:, :2].view(total_nnz, -1, headdim) |
|
apply_rotary( |
|
qk, |
|
cos, |
|
sin, |
|
seqlen_offsets=0, |
|
cu_seqlens=cu_seqlens, |
|
max_seqlen=max_seqlen, |
|
interleaved=False, |
|
inplace=True, |
|
) |
|
|
|
ctx.save_for_backward(cos, sin, cu_seqlens) |
|
ctx.max_seqlen = max_seqlen |
|
return qkv |
|
|
|
@staticmethod |
|
def backward(ctx, do): |
|
cos, sin, cu_seqlens = ctx.saved_tensors |
|
do = do.contiguous() |
|
total_nnz, _three, _nheads, headdim = do.shape |
|
|
|
|
|
dqk = do[:, :2].view(total_nnz, -1, headdim) |
|
apply_rotary( |
|
dqk, |
|
cos, |
|
sin, |
|
seqlen_offsets=0, |
|
cu_seqlens=cu_seqlens, |
|
max_seqlen=ctx.max_seqlen, |
|
interleaved=False, |
|
inplace=True, |
|
conjugate=True, |
|
) |
|
|
|
return do, None, None, None, None, None, None |
|
|
|
|
|
def apply_rotary_unpadded( |
|
qkv, |
|
cos, |
|
sin, |
|
cu_seqlens: Optional[torch.Tensor] = None, |
|
max_seqlen: Optional[int] = None, |
|
): |
|
""" |
|
Arguments: |
|
qkv: (total_nnz, 3, nheads, headdim) - input tensor for packed QKV. |
|
cos, sin: (seqlen_rotary, rotary_dim / 2) |
|
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead |
|
of 1st half and 2nd half (GPT-NeoX style). |
|
inplace: if True, apply rotary embedding in-place. |
|
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount. |
|
Most commonly used in inference when we have KV cache. |
|
cu_seqlens: (batch + 1,) or None |
|
max_seqlen: int |
|
Return: |
|
out: (total_nnz, dim) |
|
rotary_dim must be <= headdim |
|
Apply rotary embedding to the first rotary_dim of x. |
|
""" |
|
return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, cu_seqlens, max_seqlen) |
|
|
|
|
|
class ModernBertUnpaddedRotaryEmbedding(RotaryEmbedding): |
|
""" |
|
The rotary position embeddings applied directly to unpadded sequences. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
base: float = 10000.0, |
|
max_seqlen: Optional[int] = None, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
""" |
|
max_seqlen: if max_seqlen, device, and dtype are provided, we precompute the cos_sin_cache |
|
up to max_seqlen. If the max_seqlen, device, or dtype during training/inference differ, |
|
the cos_sin_cache wll be recomputed during the forward pass. |
|
""" |
|
super().__init__(dim=dim, base=base, pos_idx_in_fp32=True, device=device, interleaved=False) |
|
self.max_seqlen = max_seqlen |
|
|
|
if max_seqlen is not None and device is not None and dtype is not None: |
|
self._update_cos_sin_cache(max_seqlen, device=device, dtype=dtype) |
|
|
|
def forward( |
|
self, |
|
qkv: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
max_seqlen: Optional[int] = None, |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
""" |
|
Apply rotary embedding *inplace* to qkv. |
|
qkv: (total_nnz, 3, nheads, headdim) |
|
cu_seqlens: (batch + 1,) cumulative sequence lengths |
|
max_seqlen: int max seq length in the batch |
|
""" |
|
if max_seqlen is not None: |
|
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype) |
|
|
|
qkv = apply_rotary_unpadded( |
|
qkv, |
|
self._cos_cached, |
|
self._sin_cached, |
|
cu_seqlens=cu_seqlens, |
|
max_seqlen=max_seqlen, |
|
) |
|
|
|
return qkv |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, base={self.base}, scale_base={self.scale_base}" |
|
|
|
|
|
class ModernBertEmbeddings(nn.Module): |
|
""" |
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. |
|
""" |
|
|
|
def __init__(self, config: ModernBertConfig): |
|
super().__init__() |
|
self.config = config |
|
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias) |
|
self.drop = nn.Dropout(config.embedding_dropout) |
|
|
|
@torch.compile(dynamic=True) |
|
def compiled_embeddings(self, input_ids: torch.LongTensor) -> torch.Tensor: |
|
return self.drop(self.norm(self.tok_embeddings(input_ids))) |
|
|
|
def forward(self, input_ids: torch.LongTensor, position_ids: Optional[torch.LongTensor] = None) -> torch.Tensor: |
|
hidden_states = ( |
|
self.compiled_embeddings(input_ids) |
|
if self.config.reference_compile |
|
else self.drop(self.norm(self.tok_embeddings(input_ids))) |
|
) |
|
return hidden_states |
|
|
|
|
|
class ModernBertMLP(nn.Module): |
|
"""Applies the GLU at the end of each ModernBERT layer. |
|
|
|
Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate` |
|
and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality. |
|
""" |
|
|
|
def __init__(self, config: ModernBertConfig): |
|
super().__init__() |
|
self.config = config |
|
self.Wi = nn.Linear(config.hidden_size, int(config.intermediate_size) * 2, bias=config.mlp_bias) |
|
self.act = ACT2FN[config.hidden_activation] |
|
self.drop = nn.Dropout(config.mlp_dropout) |
|
self.Wo = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_bias) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
input, gate = self.Wi(hidden_states).chunk(2, dim=-1) |
|
return self.Wo(self.drop(self.act(input) * gate)) |
|
|
|
|
|
class ModernBertRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)) |
|
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False) |
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids, seq_len=None): |
|
|
|
self.inv_freq.to(x.device) |
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type |
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
def eager_attention_forward( |
|
module: "ModernBertAttention", |
|
qkv: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
sliding_window_mask: torch.Tensor, |
|
position_ids: Optional[torch.LongTensor], |
|
local_attention: Tuple[int, int], |
|
bs: int, |
|
dim: int, |
|
output_attentions: Optional[bool] = False, |
|
**_kwargs, |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
|
|
cos, sin = module.rotary_emb(qkv, position_ids=position_ids) |
|
query, key, value = qkv.transpose(3, 1).unbind(dim=2) |
|
|
|
query, key = apply_rotary_pos_emb(query, key, cos, sin) |
|
|
|
scale = module.head_dim**-0.5 |
|
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scale |
|
|
|
if local_attention != (-1, -1): |
|
attention_mask = sliding_window_mask |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=module.attention_dropout, training=module.training) |
|
attn_output = torch.matmul(attn_weights, value) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bs, -1, dim) |
|
if output_attentions: |
|
return (attn_output, attn_weights) |
|
return (attn_output,) |
|
|
|
|
|
def flash_attention_forward( |
|
module: "ModernBertAttention", |
|
qkv: torch.Tensor, |
|
rotary_emb: ModernBertUnpaddedRotaryEmbedding, |
|
cu_seqlens: torch.Tensor, |
|
max_seqlen: int, |
|
local_attention: Tuple[int, int], |
|
bs: int, |
|
dim: int, |
|
target_dtype: torch.dtype = torch.bfloat16, |
|
**_kwargs, |
|
) -> Tuple[torch.Tensor]: |
|
|
|
qkv = rotary_emb(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen) |
|
|
|
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16) |
|
if convert_dtype: |
|
|
|
|
|
orig_dtype = qkv.dtype |
|
qkv = qkv.to(target_dtype) |
|
|
|
attn = flash_attn_varlen_qkvpacked_func( |
|
qkv, |
|
cu_seqlens=cu_seqlens, |
|
max_seqlen=max_seqlen, |
|
dropout_p=module.attention_dropout if module.training else 0.0, |
|
deterministic=module.deterministic_flash_attn, |
|
window_size=local_attention, |
|
) |
|
attn = attn.to(orig_dtype) |
|
else: |
|
attn = flash_attn_varlen_qkvpacked_func( |
|
qkv, |
|
cu_seqlens=cu_seqlens, |
|
max_seqlen=max_seqlen, |
|
dropout_p=module.attention_dropout if module.training else 0.0, |
|
deterministic=module.deterministic_flash_attn, |
|
window_size=local_attention, |
|
) |
|
return (attn.view(bs, dim),) |
|
|
|
|
|
def sdpa_attention_forward( |
|
module: "ModernBertAttention", |
|
qkv: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
sliding_window_mask: torch.Tensor, |
|
position_ids: Optional[torch.LongTensor], |
|
local_attention: Tuple[int, int], |
|
bs: int, |
|
dim: int, |
|
**_kwargs, |
|
) -> Tuple[torch.Tensor]: |
|
|
|
cos, sin = module.rotary_emb(qkv, position_ids=position_ids) |
|
query, key, value = qkv.transpose(3, 1).unbind(dim=2) |
|
|
|
query, key = apply_rotary_pos_emb(query, key, cos, sin) |
|
|
|
if local_attention != (-1, -1): |
|
attention_mask = sliding_window_mask |
|
|
|
attn_output = ( |
|
F.scaled_dot_product_attention( |
|
query, |
|
key, |
|
value, |
|
dropout_p=module.attention_dropout if module.training else 0.0, |
|
attn_mask=attention_mask, |
|
) |
|
.transpose(1, 2) |
|
.contiguous() |
|
) |
|
attn_output = attn_output.view(bs, -1, dim) |
|
return (attn_output,) |
|
|
|
|
|
MODERNBERT_ATTENTION_FUNCTION = { |
|
"flash_attention_2": flash_attention_forward, |
|
"eager": eager_attention_forward, |
|
"sdpa": sdpa_attention_forward, |
|
} |
|
|
|
|
|
class ModernBertAttention(nn.Module): |
|
"""Performs multi-headed self attention on a batch of unpadded sequences. |
|
|
|
If Flash Attention 2 is installed, this module uses Flash Attention to improve throughput. |
|
If Flash Attention 2 is not installed, the implementation will use PyTorch's SDPA kernel, |
|
which requires padding and unpadding inputs, adding some overhead. |
|
|
|
See `forward` method for additional details. |
|
""" |
|
|
|
def __init__(self, config: ModernBertConfig, layer_id: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_id = layer_id |
|
|
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.attention_dropout = config.attention_dropout |
|
self.deterministic_flash_attn = config.deterministic_flash_attn |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = config.hidden_size // config.num_attention_heads |
|
self.all_head_size = self.head_dim * self.num_heads |
|
self.Wqkv = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=config.attention_bias) |
|
|
|
if layer_id % config.global_attn_every_n_layers != 0: |
|
self.local_attention = (config.local_attention // 2, config.local_attention // 2) |
|
else: |
|
self.local_attention = (-1, -1) |
|
|
|
rope_theta = config.global_rope_theta |
|
max_position_embeddings = config.max_position_embeddings |
|
if self.local_attention != (-1, -1): |
|
if config.local_rope_theta is not None: |
|
rope_theta = config.local_rope_theta |
|
max_position_embeddings = config.local_attention |
|
|
|
if config._attn_implementation == "flash_attention_2": |
|
self.rotary_emb = ModernBertUnpaddedRotaryEmbedding( |
|
dim=self.head_dim, max_seqlen=max_position_embeddings, base=rope_theta |
|
) |
|
else: |
|
self.rotary_emb = ModernBertRotaryEmbedding( |
|
dim=self.head_dim, max_position_embeddings=max_position_embeddings, base=rope_theta |
|
) |
|
|
|
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias) |
|
self.out_drop = nn.Dropout(config.attention_dropout) if config.attention_dropout > 0.0 else nn.Identity() |
|
self.pruned_heads = set() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
output_attentions: Optional[bool] = False, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
qkv = self.Wqkv(hidden_states) |
|
|
|
bs = hidden_states.shape[0] |
|
if self.config._attn_implementation == "flash_attention_2": |
|
qkv = qkv.view(-1, 3, self.num_heads, self.head_dim) |
|
else: |
|
qkv = qkv.view(bs, -1, 3, self.num_heads, self.head_dim) |
|
|
|
attn_outputs = MODERNBERT_ATTENTION_FUNCTION[self.config._attn_implementation]( |
|
self, |
|
qkv=qkv, |
|
rotary_emb=self.rotary_emb, |
|
local_attention=self.local_attention, |
|
bs=bs, |
|
dim=self.all_head_size, |
|
output_attentions=output_attentions, |
|
**kwargs, |
|
) |
|
hidden_states = attn_outputs[0] |
|
hidden_states = self.out_drop(self.Wo(hidden_states)) |
|
|
|
return (hidden_states,) + attn_outputs[1:] |
|
|
|
|
|
class ModernBertEncoderLayer(nn.Module): |
|
def __init__(self, config: ModernBertConfig, layer_id: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
if layer_id == 0: |
|
self.attn_norm = nn.Identity() |
|
else: |
|
self.attn_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias) |
|
self.attn = ModernBertAttention(config=config, layer_id=layer_id) |
|
self.mlp_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias) |
|
self.mlp = ModernBertMLP(config) |
|
|
|
@torch.compile(dynamic=True) |
|
def compiled_mlp(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
return self.mlp(self.mlp_norm(hidden_states)) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
sliding_window_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
cu_seqlens: Optional[torch.Tensor] = None, |
|
max_seqlen: Optional[int] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> torch.Tensor: |
|
attn_outputs = self.attn( |
|
self.attn_norm(hidden_states), |
|
attention_mask=attention_mask, |
|
sliding_window_mask=sliding_window_mask, |
|
position_ids=position_ids, |
|
cu_seqlens=cu_seqlens, |
|
max_seqlen=max_seqlen, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = hidden_states + attn_outputs[0] |
|
mlp_output = ( |
|
self.compiled_mlp(hidden_states) |
|
if self.config.reference_compile |
|
else self.mlp(self.mlp_norm(hidden_states)) |
|
) |
|
hidden_states = hidden_states + mlp_output |
|
|
|
return (hidden_states,) + attn_outputs[1:] |
|
|
|
|
|
MODERNBERT_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`ModernBertConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare ModernBert Model outputting raw hidden-states without any specific head on top.", |
|
MODERNBERT_START_DOCSTRING, |
|
) |
|
class ModernBertPreTrainedModel(PreTrainedModel): |
|
config_class = ModernBertConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["ModernBertEmbeddings", "ModernBertEncoderLayer"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_flex_attn = False |
|
|
|
def _init_weights(self, module: nn.Module): |
|
cutoff_factor = self.config.initializer_cutoff_factor |
|
if cutoff_factor is None: |
|
cutoff_factor = 3 |
|
|
|
def init_weight(module: nn.Module, std: float): |
|
nn.init.trunc_normal_( |
|
module.weight, |
|
mean=0.0, |
|
std=std, |
|
a=-cutoff_factor * std, |
|
b=cutoff_factor * std, |
|
) |
|
|
|
if isinstance(module, nn.Linear): |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
|
|
stds = { |
|
"in": self.config.initializer_range, |
|
"out": self.config.initializer_range / math.sqrt(2.0 * self.config.num_hidden_layers), |
|
"embedding": self.config.initializer_range, |
|
"final_out": self.config.hidden_size**-0.5, |
|
} |
|
|
|
if isinstance(module, ModernBertEmbeddings): |
|
init_weight(module.tok_embeddings, stds["embedding"]) |
|
elif isinstance(module, ModernBertMLP): |
|
init_weight(module.Wi, stds["in"]) |
|
init_weight(module.Wo, stds["out"]) |
|
elif isinstance(module, ModernBertAttention): |
|
init_weight(module.Wqkv, stds["in"]) |
|
init_weight(module.Wo, stds["out"]) |
|
elif isinstance(module, ModernBertPredictionHead): |
|
init_weight(module.dense, stds["out"]) |
|
elif isinstance(module, ModernBertForMaskedLM): |
|
init_weight(module.decoder, stds["out"]) |
|
elif isinstance(module, (ModernBertForSequenceClassification, ModernBertForTokenClassification)): |
|
init_weight(module.classifier, stds["final_out"]) |
|
|
|
@classmethod |
|
def _autoset_attn_implementation( |
|
cls, |
|
config, |
|
use_flash_attention_2: bool = False, |
|
torch_dtype: Optional[torch.dtype] = None, |
|
device_map: Optional[Union[str, Dict[str, int]]] = None, |
|
check_device_map: bool = True, |
|
): |
|
|
|
|
|
if config._attn_implementation_internal is None: |
|
config._attn_implementation_internal = "flash_attention_2" |
|
try: |
|
return cls._check_and_enable_flash_attn_2( |
|
config, |
|
torch_dtype=torch_dtype, |
|
device_map=device_map, |
|
hard_check_only=False, |
|
check_device_map=check_device_map, |
|
) |
|
except (ValueError, ImportError): |
|
config._attn_implementation_internal = None |
|
return super()._autoset_attn_implementation( |
|
config, |
|
use_flash_attention_2=use_flash_attention_2, |
|
torch_dtype=torch_dtype, |
|
device_map=device_map, |
|
check_device_map=check_device_map, |
|
) |
|
|
|
def _maybe_set_compile(self): |
|
if self.config.reference_compile is False: |
|
return |
|
|
|
if hasattr(self, "hf_device_map") and len(self.hf_device_map) > 1: |
|
if self.config.reference_compile: |
|
logger.warning_once( |
|
"If `accelerate` split the model across devices, `torch.compile` will not work. " |
|
"Falling back to non-compiled mode." |
|
) |
|
self.config.reference_compile = False |
|
|
|
if self.device.type == "mps": |
|
if self.config.reference_compile: |
|
logger.warning_once( |
|
"Compiling the model with `torch.compile` and using a `torch.mps` device is not supported. " |
|
"Falling back to non-compiled mode." |
|
) |
|
self.config.reference_compile = False |
|
|
|
if self.config.reference_compile is None: |
|
self.config.reference_compile = is_triton_available() |
|
|
|
def resize_token_embeddings(self, *args, **kwargs): |
|
model_embeds = super().resize_token_embeddings(*args, **kwargs) |
|
|
|
if self.config.reference_compile in {True, None}: |
|
if self.config.reference_compile: |
|
logger.warning_once( |
|
"Resizing token embeddings with `torch.compile` is not supported. Falling back to non-compiled mode." |
|
) |
|
self.config.reference_compile = False |
|
|
|
return model_embeds |
|
|
|
|
|
def _unpad_modernbert_input( |
|
inputs: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
position_ids: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, Optional[torch.Tensor], Optional[torch.Tensor]]: |
|
""" |
|
Remove padding from input sequences. |
|
|
|
Args: |
|
inputs: (batch, seqlen, ...) or (batch, seqlen) |
|
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. |
|
position_ids: (batch, seqlen), int, position ids |
|
labels: (batch, seqlen), int, labels |
|
|
|
Returns: |
|
unpadded_inputs: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask. |
|
indices: (total_nnz) |
|
cu_seqlens: (batch + 1), the cumulative sequence lengths |
|
max_seqlen_in_batch: int |
|
unpadded_position_ids: (total_nnz) or None |
|
unpadded_labels: (total_nnz) or None |
|
""" |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = int(seqlens_in_batch.max().item()) |
|
cu_seqlens = torch.nn.functional.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
|
|
if inputs.dim() == 2: |
|
unpadded_inputs = inputs.flatten()[indices] |
|
else: |
|
batch, seqlen, *rest = inputs.shape |
|
shape = batch * seqlen |
|
unpadded_inputs = inputs.view(shape, *rest)[indices] |
|
|
|
unpadded_position_ids = position_ids.flatten()[indices] if position_ids is not None else None |
|
unpadded_labels = labels.flatten()[indices] if labels is not None else None |
|
|
|
return unpadded_inputs, indices, cu_seqlens, max_seqlen_in_batch, unpadded_position_ids, unpadded_labels |
|
|
|
|
|
def _pad_modernbert_output( |
|
inputs: torch.Tensor, |
|
indices: torch.Tensor, |
|
batch: int, |
|
seqlen: int, |
|
) -> torch.Tensor: |
|
""" |
|
Add padding to sequences. |
|
|
|
Args: |
|
inputs: (total_nnz, ...) or (total_nnz,), where total_nnz = number of tokens selected in attention_mask. |
|
indices: (total_nnz) |
|
batch: int, batch size |
|
seqlen: int, max sequence length |
|
|
|
Returns: |
|
padded_inputs: (batch, seqlen, ...) or (batch, seqlen) |
|
""" |
|
if inputs.dim() == 1: |
|
output = torch.zeros(batch * seqlen, dtype=inputs.dtype, device=inputs.device) |
|
output[indices] = inputs |
|
padded_inputs = output.view(batch, seqlen) |
|
else: |
|
_, *rest = inputs.shape |
|
output = torch.zeros(batch * seqlen, *rest, dtype=inputs.dtype, device=inputs.device) |
|
output[indices] = inputs |
|
padded_inputs = output.view(batch, seqlen, *rest) |
|
|
|
return padded_inputs |
|
|
|
|
|
MODERNBERT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers |
|
perform global attention, while the rest perform local attention. This mask is used to avoid attending to |
|
far-away tokens in the local attention layers. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*): |
|
Indices of the non-padding tokens in the input sequence. Used for unpadding the output. |
|
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*): |
|
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors. |
|
max_seqlen (`int`, *optional*): |
|
Maximum sequence length in the batch. Used to pad the output tensors. |
|
batch_size (`int`, *optional*): |
|
Batch size of the input sequences. Used to pad the output tensors. |
|
seq_len (`int`, *optional*): |
|
Sequence length of the input sequences. Used to pad the output tensors. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare ModernBert Model outputting raw hidden-states without any specific head on top.", |
|
MODERNBERT_START_DOCSTRING, |
|
) |
|
class ModernBertModel(ModernBertPreTrainedModel): |
|
def __init__(self, config: ModernBertConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.embeddings = ModernBertEmbeddings(config) |
|
self.layers = nn.ModuleList( |
|
[ModernBertEncoderLayer(config, layer_id) for layer_id in range(config.num_hidden_layers)] |
|
) |
|
self.final_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias) |
|
self.gradient_checkpointing = False |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.tok_embeddings = value |
|
|
|
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
sliding_window_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
indices: Optional[torch.Tensor] = None, |
|
cu_seqlens: Optional[torch.Tensor] = None, |
|
max_seqlen: Optional[int] = None, |
|
batch_size: Optional[int] = None, |
|
seq_len: Optional[int] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutput]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
self._maybe_set_compile() |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
|
|
if batch_size is None and seq_len is None: |
|
batch_size, seq_len = input_ids.shape[:2] |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones((batch_size, seq_len), device=input_ids.device, dtype=torch.bool) |
|
|
|
repad = False |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if indices is None and cu_seqlens is None and max_seqlen is None: |
|
repad = True |
|
with torch.no_grad(): |
|
input_ids, indices, cu_seqlens, max_seqlen, *_ = _unpad_modernbert_input( |
|
inputs=input_ids, attention_mask=attention_mask |
|
) |
|
else: |
|
if position_ids is None: |
|
position_ids = torch.arange(seq_len, device=input_ids.device).unsqueeze(0) |
|
|
|
attention_mask, sliding_window_mask = self._update_attention_mask( |
|
attention_mask, output_attentions=output_attentions |
|
) |
|
|
|
hidden_states = self.embeddings(input_ids) |
|
|
|
for encoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
encoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
sliding_window_mask, |
|
position_ids, |
|
cu_seqlens, |
|
max_seqlen, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
sliding_window_mask=sliding_window_mask, |
|
position_ids=position_ids, |
|
cu_seqlens=cu_seqlens, |
|
max_seqlen=max_seqlen, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = layer_outputs[0] |
|
if output_attentions and len(layer_outputs) > 1: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
hidden_states = self.final_norm(hidden_states) |
|
|
|
if repad: |
|
hidden_states = _pad_modernbert_output( |
|
inputs=hidden_states, indices=indices, batch=batch_size, seqlen=seq_len |
|
) |
|
if all_hidden_states is not None: |
|
all_hidden_states = tuple( |
|
_pad_modernbert_output(inputs=hs, indices=indices, batch=batch_size, seqlen=seq_len) |
|
for hs in all_hidden_states |
|
) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
def _update_attention_mask(self, attention_mask: torch.Tensor, output_attentions: bool) -> torch.Tensor: |
|
if output_attentions: |
|
if self.config._attn_implementation == "sdpa": |
|
logger.warning_once( |
|
"Outputting attentions is only supported with the 'eager' attention implementation, " |
|
'not with "sdpa". Falling back to `attn_implementation="eager"`.' |
|
) |
|
self.config._attn_implementation = "eager" |
|
elif self.config._attn_implementation != "eager": |
|
logger.warning_once( |
|
"Outputting attentions is only supported with the eager attention implementation, " |
|
f'not with {self.config._attn_implementation}. Consider setting `attn_implementation="eager"`.' |
|
" Setting `output_attentions=False`." |
|
) |
|
|
|
global_attention_mask = _prepare_4d_attention_mask(attention_mask, self.dtype) |
|
|
|
|
|
rows = torch.arange(global_attention_mask.shape[2]).unsqueeze(0) |
|
|
|
distance = torch.abs(rows - rows.T) |
|
|
|
|
|
window_mask = ( |
|
(distance <= self.config.local_attention // 2).unsqueeze(0).unsqueeze(0).to(attention_mask.device) |
|
) |
|
|
|
sliding_window_mask = global_attention_mask.masked_fill(window_mask.logical_not(), torch.finfo(self.dtype).min) |
|
|
|
return global_attention_mask, sliding_window_mask |
|
|
|
|
|
class ModernBertPredictionHead(nn.Module): |
|
def __init__(self, config: ModernBertConfig): |
|
super().__init__() |
|
self.config = config |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.classifier_bias) |
|
self.act = ACT2FN[config.classifier_activation] |
|
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
return self.norm(self.act(self.dense(hidden_states))) |
|
|
|
|
|
@add_start_docstrings( |
|
"The ModernBert Model with a decoder head on top that is used for masked language modeling.", |
|
MODERNBERT_START_DOCSTRING, |
|
) |
|
class ModernBertForMaskedLM(ModernBertPreTrainedModel): |
|
_tied_weights_keys = ["decoder.weight"] |
|
|
|
def __init__(self, config: ModernBertConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.model = ModernBertModel(config) |
|
self.head = ModernBertPredictionHead(config) |
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=config.decoder_bias) |
|
|
|
self.sparse_prediction = self.config.sparse_prediction |
|
self.sparse_pred_ignore_index = self.config.sparse_pred_ignore_index |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings: nn.Linear): |
|
self.decoder = new_embeddings |
|
|
|
@torch.compile(dynamic=True) |
|
def compiled_head(self, output: torch.Tensor) -> torch.Tensor: |
|
return self.decoder(self.head(output)) |
|
|
|
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=MaskedLMOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor], |
|
attention_mask: Optional[torch.Tensor] = None, |
|
sliding_window_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
indices: Optional[torch.Tensor] = None, |
|
cu_seqlens: Optional[torch.Tensor] = None, |
|
max_seqlen: Optional[int] = None, |
|
batch_size: Optional[int] = None, |
|
seq_len: Optional[int] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
self._maybe_set_compile() |
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
if indices is None and cu_seqlens is None and max_seqlen is None: |
|
batch_size, seq_len = input_ids.shape[:2] |
|
if attention_mask is None: |
|
attention_mask = torch.ones((batch_size, seq_len), device=input_ids.device, dtype=torch.bool) |
|
with torch.no_grad(): |
|
input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input( |
|
inputs=input_ids, attention_mask=attention_mask, position_ids=position_ids, labels=labels |
|
) |
|
|
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
sliding_window_mask=sliding_window_mask, |
|
position_ids=position_ids, |
|
indices=indices, |
|
cu_seqlens=cu_seqlens, |
|
max_seqlen=max_seqlen, |
|
batch_size=batch_size, |
|
seq_len=seq_len, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
last_hidden_state = outputs[0] |
|
|
|
if self.sparse_prediction and labels is not None: |
|
|
|
labels = labels.view(-1) |
|
last_hidden_state = last_hidden_state.view(labels.shape[0], -1) |
|
|
|
|
|
mask_tokens = labels != self.sparse_pred_ignore_index |
|
last_hidden_state = last_hidden_state[mask_tokens] |
|
labels = labels[mask_tokens] |
|
|
|
logits = ( |
|
self.compiled_head(last_hidden_state) |
|
if self.config.reference_compile |
|
else self.decoder(self.head(last_hidden_state)) |
|
) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits, labels, vocab_size=self.config.vocab_size) |
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
with torch.no_grad(): |
|
logits = _pad_modernbert_output(inputs=logits, indices=indices, batch=batch_size, seqlen=seq_len) |
|
if not return_dict: |
|
output = (logits,) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"The ModernBert Model with a sequence classification head on top that performs pooling.", |
|
MODERNBERT_START_DOCSTRING, |
|
) |
|
class ModernBertForSequenceClassification(ModernBertPreTrainedModel): |
|
def __init__(self, config: ModernBertConfig): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.model = ModernBertModel(config) |
|
self.head = ModernBertPredictionHead(config) |
|
self.drop = torch.nn.Dropout(config.classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=SequenceClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor], |
|
attention_mask: Optional[torch.Tensor] = None, |
|
sliding_window_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
indices: Optional[torch.Tensor] = None, |
|
cu_seqlens: Optional[torch.Tensor] = None, |
|
max_seqlen: Optional[int] = None, |
|
batch_size: Optional[int] = None, |
|
seq_len: Optional[int] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
self._maybe_set_compile() |
|
|
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
sliding_window_mask=sliding_window_mask, |
|
position_ids=position_ids, |
|
indices=indices, |
|
cu_seqlens=cu_seqlens, |
|
max_seqlen=max_seqlen, |
|
batch_size=batch_size, |
|
seq_len=seq_len, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
last_hidden_state = outputs[0] |
|
|
|
if self.config.classifier_pooling == "cls": |
|
last_hidden_state = last_hidden_state[:, 0] |
|
elif self.config.classifier_pooling == "mean": |
|
last_hidden_state = (last_hidden_state * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum( |
|
dim=1, keepdim=True |
|
) |
|
|
|
pooled_output = self.head(last_hidden_state) |
|
pooled_output = self.drop(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"The ModernBert Model with a token classification head on top, e.g. for Named Entity Recognition (NER) tasks.", |
|
MODERNBERT_START_DOCSTRING, |
|
) |
|
class ModernBertForTokenClassification(ModernBertPreTrainedModel): |
|
def __init__(self, config: ModernBertConfig): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.model = ModernBertModel(config) |
|
self.head = ModernBertPredictionHead(config) |
|
self.drop = torch.nn.Dropout(config.classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=TokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor], |
|
attention_mask: Optional[torch.Tensor] = None, |
|
sliding_window_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
indices: Optional[torch.Tensor] = None, |
|
cu_seqlens: Optional[torch.Tensor] = None, |
|
max_seqlen: Optional[int] = None, |
|
batch_size: Optional[int] = None, |
|
seq_len: Optional[int] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
self._maybe_set_compile() |
|
|
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
sliding_window_mask=sliding_window_mask, |
|
position_ids=position_ids, |
|
indices=indices, |
|
cu_seqlens=cu_seqlens, |
|
max_seqlen=max_seqlen, |
|
batch_size=batch_size, |
|
seq_len=seq_len, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
last_hidden_state = outputs[0] |
|
|
|
last_hidden_state = self.head(last_hidden_state) |
|
last_hidden_state = self.drop(last_hidden_state) |
|
logits = self.classifier(last_hidden_state) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
__all__ = [ |
|
"ModernBertModel", |
|
"ModernBertPreTrainedModel", |
|
"ModernBertForMaskedLM", |
|
"ModernBertForSequenceClassification", |
|
"ModernBertForTokenClassification", |
|
] |
|
|