File size: 5,974 Bytes
da2b927 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
#! /usr/bin/python3
#pip3 install transformers accelerate deepspeed triton datasets fugashi unidic-lite
import os,json
os.system("""
if test -d transformers
then :
else git clone --depth=1 https://github.com/huggingface/transformers transformers-all
ln -s transformers-all/src/transformers transformers
fi
test -d ModernBERT-large || git clone --depth=1 https://huggingface.co/answerdotai/ModernBERT-large
test -f ModernBERT-large/configuration_modernbert.py || sed 's/^from \\.\\.\\./from transformers./' transformers/models/modernbert/configuration_modernbert.py > ModernBERT-large/configuration_modernbert.py
test -f ModernBERT-large/modeling_modernbert.py || sed -e 's/^from \\.\\.\\./from transformers./' -e 's/^from .* import is_triton_available/import importlib\\nis_triton_available = lambda: importlib.util.find_spec("triton") is not None/' transformers/models/modernbert/modeling_modernbert.py > ModernBERT-large/modeling_modernbert.py
""")
with open("ModernBERT-large/config.json","r",encoding="utf-8") as r:
d=json.load(r)
if not "auto_map" in d:
d["auto_map"]={
"AutoConfig":"configuration_modernbert.ModernBertConfig",
"AutoModel":"modeling_modernbert.ModernBertModel",
"AutoModelForMaskedLM":"modeling_modernbert.ModernBertForMaskedLM",
"AutoModelForSequenceClassification":"modeling_modernbert.ModernBertForSequenceClassification",
"AutoModelForTokenClassification":"modeling_modernbert.ModernBertForTokenClassification"
}
with open("ModernBERT-large/config.json","w",encoding="utf-8") as w:
json.dump(d,w,indent=2)
if not os.path.isfile("train.txt"):
import datasets
aug=lambda x:(x.replace("侠","俠").replace("倶","俱").replace("洗","冼").replace("剥","剝").replace("即","卽").replace("呑","吞").replace("呉","吳").replace("填","塡").replace("巣","巢").replace("徴","徵").replace("徳","德").replace("掲","揭").replace("撃","擊").replace("教","敎").replace("晩","晚").replace("横","橫").replace("歩","步").replace("歴","歷").replace("毎","每").replace("冷","泠").replace("渉","涉").replace("涙","淚").replace("清","淸").replace("渇","渴").replace("温","溫").replace("状","狀").replace("産","產").replace("痩","瘦").replace("禰","祢").replace("箪","簞").replace("緑","綠").replace("緒","緖").replace("縁","緣").replace("繋","繫").replace("莱","萊").replace("薫","薰").replace("虚","虛").replace("蝉","蟬").replace("説","說").replace("躯","軀").replace("郎","郞").replace("醤","醬").replace("録","錄").replace("錬","鍊").replace("間","閒").replace("頬","頰").replace("顛","顚").replace("鴎","鷗").replace("麺","麵").replace("黄","黃").replace("黒","黑").replace("叱","𠮟"))
with open("train.txt","w",encoding="utf-8") as w:
d,u,v=datasets.load_dataset("globis-university/aozorabunko-clean"),"",""
for t in d["train"]:
for s in t["text"].replace("。","。\n").replace("\u3000"," ").split("\n"):
r=aug(s)
if r!=s:
if len(r)+len(v)<10000:
v+=r
else:
print(v,file=w)
v=r
if len(s)+len(u)<10000:
u+=s
else:
print(u,file=w)
u=s
print(u,v,file=w)
os.system("test -s token.txt || fugashi -Owakati < train.txt > token.txt")
from transformers import DebertaV2TokenizerFast
if not os.path.isfile("tokenizer.json"):
import urllib.request
from tokenizers import Tokenizer,models,pre_tokenizers,normalizers,processors,decoders,trainers
with urllib.request.urlopen("https://www.unicode.org/wg2/iso10646/edition6/data/JapaneseCoreKanji.txt") as r:
joyo=[chr(int(t,16)) for t in r.read().decode().strip().split("\n") if not t.startswith("#")]
spt=Tokenizer(models.Unigram())
spt.pre_tokenizer=pre_tokenizers.Sequence([pre_tokenizers.Whitespace(),pre_tokenizers.Punctuation()])
spt.normalizer=normalizers.Sequence([normalizers.Nmt(),normalizers.NFKC()])
spt.post_processor=processors.TemplateProcessing(single="[CLS] $A [SEP]",pair="[CLS] $A [SEP] $B:1 [SEP]:1",special_tokens=[("[CLS]",0),("[SEP]",2)])
spt.decoder=decoders.WordPiece(prefix="",cleanup=True)
spt.train(trainer=trainers.UnigramTrainer(vocab_size=65000,max_piece_length=4,initial_alphabet=joyo,special_tokens=["[CLS]","[PAD]","[SEP]","[UNK]","[MASK]"],unk_token="[UNK]",n_sub_iterations=2),files=["token.txt"])
spt.save("tokenizer.json")
tkz=DebertaV2TokenizerFast(tokenizer_file="tokenizer.json",split_by_punct=True,do_lower_case=False,keep_accents=True,vocab_file="/dev/null")
tkz.save_pretrained("modernbert-large-japanese-aozora")
with open("train.py","w",encoding="utf-8") as w:
print('''#! /usr/bin/env deepspeed
from transformers import DebertaV2TokenizerFast,ModernBertForMaskedLM,AutoConfig,DataCollatorForLanguageModeling,TrainingArguments,Trainer
tkz=DebertaV2TokenizerFast.from_pretrained("modernbert-large-japanese-aozora")
c={"trust_remote_code":True,"vocab_size":len(tkz),"tokenizer_class":type(tkz).__name__}
for k,v in tkz.special_tokens_map.items():
c[k+"_id"]=tkz.convert_tokens_to_ids(v)
cfg=AutoConfig.from_pretrained("ModernBERT-large",**c)
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,output_dir="/tmp",overwrite_output_dir=True,save_total_limit=2,save_safetensors=False)
class ReadLineDS(object):
def __init__(self,file,tokenizer):
self.tokenizer=tokenizer
with open(file,"r",encoding="utf-8") as r:
self.lines=[s.strip() for s in r if s.strip()>""]
__len__=lambda self:len(self.lines)
__getitem__=lambda self,i:self.tokenizer(self.lines[i],truncation=True,add_special_tokens=True,max_length=8190)
trn=Trainer(args=arg,data_collator=DataCollatorForLanguageModeling(tkz),model=ModernBertForMaskedLM(cfg),train_dataset=ReadLineDS("train.txt",tkz))
trn.train()
trn.save_model("modernbert-large-japanese-aozora")''',file=w)
os.system("""
chmod 755 train.py
./train.py
cp ModernBERT-large/*.py modernbert-large-japanese-aozora
""")
|