KoichiYasuoka
commited on
Commit
·
9f2b048
1
Parent(s):
33690be
initial release
Browse files- README.md +30 -0
- config.json +183 -0
- configuration_modernbert.py +213 -0
- maker.py +64 -0
- modeling_modernbert.py +1312 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- upos.py +41 -0
README.md
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "ja"
|
4 |
+
tags:
|
5 |
+
- "japanese"
|
6 |
+
- "token-classification"
|
7 |
+
- "pos"
|
8 |
+
base_model: KoichiYasuoka/modernbert-large-japanese-aozora
|
9 |
+
datasets:
|
10 |
+
- "universal_dependencies"
|
11 |
+
license: "apache-2.0"
|
12 |
+
pipeline_tag: "token-classification"
|
13 |
+
widget:
|
14 |
+
- text: "国境の長いトンネルを抜けると雪国であった。"
|
15 |
+
---
|
16 |
+
|
17 |
+
# modernbert-large-japanese-aozora-upos
|
18 |
+
|
19 |
+
## Model Description
|
20 |
+
|
21 |
+
This is a ModernBERT model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [modernbert-large-japanese-aozora](https://huggingface.co/KoichiYasuoka/modernbert-large-japanese-aozora). Every short-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/).
|
22 |
+
|
23 |
+
## How to Use
|
24 |
+
|
25 |
+
```py
|
26 |
+
from transformers import pipeline
|
27 |
+
nlp=pipeline("upos","KoichiYasuoka/modernbert-large-japanese-aozora-upos",trust_remote_code=True,aggregation_strategy="simple")
|
28 |
+
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
|
29 |
+
```
|
30 |
+
|
config.json
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ModernBertForTokenClassification"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_modernbert.ModernBertConfig",
|
9 |
+
"AutoModel": "modeling_modernbert.ModernBertModel",
|
10 |
+
"AutoModelForMaskedLM": "modeling_modernbert.ModernBertForMaskedLM",
|
11 |
+
"AutoModelForSequenceClassification": "modeling_modernbert.ModernBertForSequenceClassification",
|
12 |
+
"AutoModelForTokenClassification": "modeling_modernbert.ModernBertForTokenClassification"
|
13 |
+
},
|
14 |
+
"bos_token_id": 0,
|
15 |
+
"classifier_activation": "gelu",
|
16 |
+
"classifier_bias": false,
|
17 |
+
"classifier_dropout": 0.0,
|
18 |
+
"classifier_pooling": "mean",
|
19 |
+
"cls_token_id": 0,
|
20 |
+
"custom_pipelines": {
|
21 |
+
"upos": {
|
22 |
+
"impl": "upos.BellmanFordTokenClassificationPipeline",
|
23 |
+
"pt": "AutoModelForTokenClassification"
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"decoder_bias": true,
|
27 |
+
"deterministic_flash_attn": false,
|
28 |
+
"embedding_dropout": 0.0,
|
29 |
+
"eos_token_id": 2,
|
30 |
+
"global_attn_every_n_layers": 3,
|
31 |
+
"global_rope_theta": 160000.0,
|
32 |
+
"gradient_checkpointing": false,
|
33 |
+
"hidden_activation": "gelu",
|
34 |
+
"hidden_size": 1024,
|
35 |
+
"id2label": {
|
36 |
+
"0": "ADJ",
|
37 |
+
"1": "B-ADJ",
|
38 |
+
"2": "I-ADJ",
|
39 |
+
"3": "ADJ|Polarity=Neg",
|
40 |
+
"4": "B-ADJ|Polarity=Neg",
|
41 |
+
"5": "I-ADJ|Polarity=Neg",
|
42 |
+
"6": "ADP",
|
43 |
+
"7": "B-ADP",
|
44 |
+
"8": "I-ADP",
|
45 |
+
"9": "ADV",
|
46 |
+
"10": "B-ADV",
|
47 |
+
"11": "I-ADV",
|
48 |
+
"12": "AUX",
|
49 |
+
"13": "B-AUX",
|
50 |
+
"14": "I-AUX",
|
51 |
+
"15": "AUX|Polarity=Neg",
|
52 |
+
"16": "B-AUX|Polarity=Neg",
|
53 |
+
"17": "I-AUX|Polarity=Neg",
|
54 |
+
"18": "CCONJ",
|
55 |
+
"19": "B-CCONJ",
|
56 |
+
"20": "I-CCONJ",
|
57 |
+
"21": "DET",
|
58 |
+
"22": "B-DET",
|
59 |
+
"23": "I-DET",
|
60 |
+
"24": "INTJ",
|
61 |
+
"25": "B-INTJ",
|
62 |
+
"26": "I-INTJ",
|
63 |
+
"27": "NOUN",
|
64 |
+
"28": "B-NOUN",
|
65 |
+
"29": "I-NOUN",
|
66 |
+
"30": "NOUN|Polarity=Neg",
|
67 |
+
"31": "B-NOUN|Polarity=Neg",
|
68 |
+
"32": "I-NOUN|Polarity=Neg",
|
69 |
+
"33": "NUM",
|
70 |
+
"34": "B-NUM",
|
71 |
+
"35": "I-NUM",
|
72 |
+
"36": "PART",
|
73 |
+
"37": "B-PART",
|
74 |
+
"38": "I-PART",
|
75 |
+
"39": "PRON",
|
76 |
+
"40": "B-PRON",
|
77 |
+
"41": "I-PRON",
|
78 |
+
"42": "PROPN",
|
79 |
+
"43": "B-PROPN",
|
80 |
+
"44": "I-PROPN",
|
81 |
+
"45": "PUNCT",
|
82 |
+
"46": "B-PUNCT",
|
83 |
+
"47": "I-PUNCT",
|
84 |
+
"48": "SCONJ",
|
85 |
+
"49": "B-SCONJ",
|
86 |
+
"50": "I-SCONJ",
|
87 |
+
"51": "SYM",
|
88 |
+
"52": "B-SYM",
|
89 |
+
"53": "I-SYM",
|
90 |
+
"54": "VERB",
|
91 |
+
"55": "B-VERB",
|
92 |
+
"56": "I-VERB",
|
93 |
+
"57": "X",
|
94 |
+
"58": "B-X",
|
95 |
+
"59": "I-X"
|
96 |
+
},
|
97 |
+
"initializer_cutoff_factor": 2.0,
|
98 |
+
"initializer_range": 0.02,
|
99 |
+
"intermediate_size": 2624,
|
100 |
+
"label2id": {
|
101 |
+
"ADJ": 0,
|
102 |
+
"ADJ|Polarity=Neg": 3,
|
103 |
+
"ADP": 6,
|
104 |
+
"ADV": 9,
|
105 |
+
"AUX": 12,
|
106 |
+
"AUX|Polarity=Neg": 15,
|
107 |
+
"B-ADJ": 1,
|
108 |
+
"B-ADJ|Polarity=Neg": 4,
|
109 |
+
"B-ADP": 7,
|
110 |
+
"B-ADV": 10,
|
111 |
+
"B-AUX": 13,
|
112 |
+
"B-AUX|Polarity=Neg": 16,
|
113 |
+
"B-CCONJ": 19,
|
114 |
+
"B-DET": 22,
|
115 |
+
"B-INTJ": 25,
|
116 |
+
"B-NOUN": 28,
|
117 |
+
"B-NOUN|Polarity=Neg": 31,
|
118 |
+
"B-NUM": 34,
|
119 |
+
"B-PART": 37,
|
120 |
+
"B-PRON": 40,
|
121 |
+
"B-PROPN": 43,
|
122 |
+
"B-PUNCT": 46,
|
123 |
+
"B-SCONJ": 49,
|
124 |
+
"B-SYM": 52,
|
125 |
+
"B-VERB": 55,
|
126 |
+
"B-X": 58,
|
127 |
+
"CCONJ": 18,
|
128 |
+
"DET": 21,
|
129 |
+
"I-ADJ": 2,
|
130 |
+
"I-ADJ|Polarity=Neg": 5,
|
131 |
+
"I-ADP": 8,
|
132 |
+
"I-ADV": 11,
|
133 |
+
"I-AUX": 14,
|
134 |
+
"I-AUX|Polarity=Neg": 17,
|
135 |
+
"I-CCONJ": 20,
|
136 |
+
"I-DET": 23,
|
137 |
+
"I-INTJ": 26,
|
138 |
+
"I-NOUN": 29,
|
139 |
+
"I-NOUN|Polarity=Neg": 32,
|
140 |
+
"I-NUM": 35,
|
141 |
+
"I-PART": 38,
|
142 |
+
"I-PRON": 41,
|
143 |
+
"I-PROPN": 44,
|
144 |
+
"I-PUNCT": 47,
|
145 |
+
"I-SCONJ": 50,
|
146 |
+
"I-SYM": 53,
|
147 |
+
"I-VERB": 56,
|
148 |
+
"I-X": 59,
|
149 |
+
"INTJ": 24,
|
150 |
+
"NOUN": 27,
|
151 |
+
"NOUN|Polarity=Neg": 30,
|
152 |
+
"NUM": 33,
|
153 |
+
"PART": 36,
|
154 |
+
"PRON": 39,
|
155 |
+
"PROPN": 42,
|
156 |
+
"PUNCT": 45,
|
157 |
+
"SCONJ": 48,
|
158 |
+
"SYM": 51,
|
159 |
+
"VERB": 54,
|
160 |
+
"X": 57
|
161 |
+
},
|
162 |
+
"layer_norm_eps": 1e-05,
|
163 |
+
"local_attention": 128,
|
164 |
+
"local_rope_theta": 10000.0,
|
165 |
+
"max_position_embeddings": 8192,
|
166 |
+
"mlp_bias": false,
|
167 |
+
"mlp_dropout": 0.0,
|
168 |
+
"model_type": "modernbert",
|
169 |
+
"norm_bias": false,
|
170 |
+
"norm_eps": 1e-05,
|
171 |
+
"num_attention_heads": 16,
|
172 |
+
"num_hidden_layers": 28,
|
173 |
+
"pad_token_id": 1,
|
174 |
+
"position_embedding_type": "absolute",
|
175 |
+
"reference_compile": true,
|
176 |
+
"sep_token_id": 2,
|
177 |
+
"sparse_pred_ignore_index": -100,
|
178 |
+
"sparse_prediction": false,
|
179 |
+
"tokenizer_class": "DebertaV2TokenizerFast",
|
180 |
+
"torch_dtype": "float32",
|
181 |
+
"transformers_version": "4.47.1",
|
182 |
+
"vocab_size": 65000
|
183 |
+
}
|
configuration_modernbert.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from src/transformers/models/modernbert/modular_modernbert.py.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
5 |
+
# modular_modernbert.py file directly. One of our CI enforces this.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# Copyright 2024 Answer.AI, LightOn, and contributors, and the HuggingFace Inc. team. All rights reserved.
|
8 |
+
#
|
9 |
+
#
|
10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
11 |
+
# you may not use this file except in compliance with the License.
|
12 |
+
# You may obtain a copy of the License at
|
13 |
+
#
|
14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
15 |
+
#
|
16 |
+
# Unless required by applicable law or agreed to in writing, software
|
17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
19 |
+
# See the License for the specific language governing permissions and
|
20 |
+
# limitations under the License.
|
21 |
+
|
22 |
+
from typing import Literal
|
23 |
+
|
24 |
+
from transformers.configuration_utils import PretrainedConfig
|
25 |
+
|
26 |
+
|
27 |
+
class ModernBertConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`ModernBertModel`]. It is used to instantiate an ModernBert
|
30 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
31 |
+
defaults will yield a similar configuration to that of the ModernBERT-base.
|
32 |
+
e.g. [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base)
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 50368):
|
39 |
+
Vocabulary size of the ModernBert model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`ModernBertModel`]
|
41 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
42 |
+
Dimension of the hidden representations.
|
43 |
+
intermediate_size (`int`, *optional*, defaults to 1152):
|
44 |
+
Dimension of the MLP representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 22):
|
46 |
+
Number of hidden layers in the Transformer decoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
48 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
49 |
+
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu"`):
|
50 |
+
The non-linear activation function (function or string) in the decoder. Will default to `"gelu"`
|
51 |
+
if not specified.
|
52 |
+
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
53 |
+
The maximum sequence length that this model might ever be used with.
|
54 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
55 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
56 |
+
initializer_cutoff_factor (`float`, *optional*, defaults to 2.0):
|
57 |
+
The cutoff factor for the truncated_normal_initializer for initializing all weight matrices.
|
58 |
+
norm_eps (`float`, *optional*, defaults to 1e-05):
|
59 |
+
The epsilon used by the rms normalization layers.
|
60 |
+
norm_bias (`bool`, *optional*, defaults to `False`):
|
61 |
+
Whether to use bias in the normalization layers.
|
62 |
+
pad_token_id (`int`, *optional*, defaults to 50283):
|
63 |
+
Padding token id.
|
64 |
+
eos_token_id (`int`, *optional*, defaults to 50282):
|
65 |
+
End of stream token id.
|
66 |
+
bos_token_id (`int`, *optional*, defaults to 50281):
|
67 |
+
Beginning of stream token id.
|
68 |
+
cls_token_id (`int`, *optional*, defaults to 50281):
|
69 |
+
Classification token id.
|
70 |
+
sep_token_id (`int`, *optional*, defaults to 50282):
|
71 |
+
Separation token id.
|
72 |
+
global_rope_theta (`float`, *optional*, defaults to 160000.0):
|
73 |
+
The base period of the global RoPE embeddings.
|
74 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
75 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
76 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
77 |
+
The dropout ratio for the attention probabilities.
|
78 |
+
global_attn_every_n_layers (`int`, *optional*, defaults to 3):
|
79 |
+
The number of layers between global attention layers.
|
80 |
+
local_attention (`int`, *optional*, defaults to 128):
|
81 |
+
The window size for local attention.
|
82 |
+
local_rope_theta (`float`, *optional*, defaults to 10000.0):
|
83 |
+
The base period of the local RoPE embeddings.
|
84 |
+
embedding_dropout (`float`, *optional*, defaults to 0.0):
|
85 |
+
The dropout ratio for the embeddings.
|
86 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
87 |
+
Whether to use bias in the MLP layers.
|
88 |
+
mlp_dropout (`float`, *optional*, defaults to 0.0):
|
89 |
+
The dropout ratio for the MLP layers.
|
90 |
+
decoder_bias (`bool`, *optional*, defaults to `True`):
|
91 |
+
Whether to use bias in the decoder layers.
|
92 |
+
classifier_pooling (`str`, *optional*, defaults to `"cls"`):
|
93 |
+
The pooling method for the classifier. Should be either `"cls"` or `"mean"`. In local attention layers, the
|
94 |
+
CLS token doesn't attend to all tokens on long sequences.
|
95 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
96 |
+
The dropout ratio for the classifier.
|
97 |
+
classifier_bias (`bool`, *optional*, defaults to `False`):
|
98 |
+
Whether to use bias in the classifier.
|
99 |
+
classifier_activation (`str`, *optional*, defaults to `"gelu"`):
|
100 |
+
The activation function for the classifier.
|
101 |
+
deterministic_flash_attn (`bool`, *optional*, defaults to `False`):
|
102 |
+
Whether to use deterministic flash attention. If `False`, inference will be faster but not deterministic.
|
103 |
+
sparse_prediction (`bool`, *optional*, defaults to `False`):
|
104 |
+
Whether to use sparse prediction for the masked language model instead of returning the full dense logits.
|
105 |
+
sparse_pred_ignore_index (`int`, *optional*, defaults to -100):
|
106 |
+
The index to ignore for the sparse prediction.
|
107 |
+
reference_compile (`bool`, *optional*):
|
108 |
+
Whether to compile the layers of the model which were compiled during pretraining. If `None`, then parts of
|
109 |
+
the model will be compiled if 1) `triton` is installed, 2) the model is not on MPS, 3) the model is not
|
110 |
+
shared between devices, and 4) the model is not resized after initialization. If `True`, then the model may
|
111 |
+
be faster in some scenarios.
|
112 |
+
|
113 |
+
Examples:
|
114 |
+
|
115 |
+
```python
|
116 |
+
>>> from transformers import ModernBertModel, ModernBertConfig
|
117 |
+
|
118 |
+
>>> # Initializing a ModernBert style configuration
|
119 |
+
>>> configuration = ModernBertConfig()
|
120 |
+
|
121 |
+
>>> # Initializing a model from the modernbert-base style configuration
|
122 |
+
>>> model = ModernBertModel(configuration)
|
123 |
+
|
124 |
+
>>> # Accessing the model configuration
|
125 |
+
>>> configuration = model.config
|
126 |
+
```"""
|
127 |
+
|
128 |
+
model_type = "modernbert"
|
129 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
130 |
+
|
131 |
+
def __init__(
|
132 |
+
self,
|
133 |
+
vocab_size=50368,
|
134 |
+
hidden_size=768,
|
135 |
+
intermediate_size=1152,
|
136 |
+
num_hidden_layers=22,
|
137 |
+
num_attention_heads=12,
|
138 |
+
hidden_activation="gelu",
|
139 |
+
max_position_embeddings=8192,
|
140 |
+
initializer_range=0.02,
|
141 |
+
initializer_cutoff_factor=2.0,
|
142 |
+
norm_eps=1e-5,
|
143 |
+
norm_bias=False,
|
144 |
+
pad_token_id=50283,
|
145 |
+
eos_token_id=50282,
|
146 |
+
bos_token_id=50281,
|
147 |
+
cls_token_id=50281,
|
148 |
+
sep_token_id=50282,
|
149 |
+
global_rope_theta=160000.0,
|
150 |
+
attention_bias=False,
|
151 |
+
attention_dropout=0.0,
|
152 |
+
global_attn_every_n_layers=3,
|
153 |
+
local_attention=128,
|
154 |
+
local_rope_theta=10000.0,
|
155 |
+
embedding_dropout=0.0,
|
156 |
+
mlp_bias=False,
|
157 |
+
mlp_dropout=0.0,
|
158 |
+
decoder_bias=True,
|
159 |
+
classifier_pooling: Literal["cls", "mean"] = "cls",
|
160 |
+
classifier_dropout=0.0,
|
161 |
+
classifier_bias=False,
|
162 |
+
classifier_activation="gelu",
|
163 |
+
deterministic_flash_attn=False,
|
164 |
+
sparse_prediction=False,
|
165 |
+
sparse_pred_ignore_index=-100,
|
166 |
+
reference_compile=None,
|
167 |
+
**kwargs,
|
168 |
+
):
|
169 |
+
super().__init__(
|
170 |
+
pad_token_id=pad_token_id,
|
171 |
+
bos_token_id=bos_token_id,
|
172 |
+
eos_token_id=eos_token_id,
|
173 |
+
cls_token_id=cls_token_id,
|
174 |
+
sep_token_id=sep_token_id,
|
175 |
+
**kwargs,
|
176 |
+
)
|
177 |
+
self.vocab_size = vocab_size
|
178 |
+
self.max_position_embeddings = max_position_embeddings
|
179 |
+
self.hidden_size = hidden_size
|
180 |
+
self.intermediate_size = intermediate_size
|
181 |
+
self.num_hidden_layers = num_hidden_layers
|
182 |
+
self.num_attention_heads = num_attention_heads
|
183 |
+
self.initializer_range = initializer_range
|
184 |
+
self.initializer_cutoff_factor = initializer_cutoff_factor
|
185 |
+
self.norm_eps = norm_eps
|
186 |
+
self.norm_bias = norm_bias
|
187 |
+
self.global_rope_theta = global_rope_theta
|
188 |
+
self.attention_bias = attention_bias
|
189 |
+
self.attention_dropout = attention_dropout
|
190 |
+
self.hidden_activation = hidden_activation
|
191 |
+
self.global_attn_every_n_layers = global_attn_every_n_layers
|
192 |
+
self.local_attention = local_attention
|
193 |
+
self.local_rope_theta = local_rope_theta
|
194 |
+
self.embedding_dropout = embedding_dropout
|
195 |
+
self.mlp_bias = mlp_bias
|
196 |
+
self.mlp_dropout = mlp_dropout
|
197 |
+
self.decoder_bias = decoder_bias
|
198 |
+
self.classifier_pooling = classifier_pooling
|
199 |
+
self.classifier_dropout = classifier_dropout
|
200 |
+
self.classifier_bias = classifier_bias
|
201 |
+
self.classifier_activation = classifier_activation
|
202 |
+
self.deterministic_flash_attn = deterministic_flash_attn
|
203 |
+
self.sparse_prediction = sparse_prediction
|
204 |
+
self.sparse_pred_ignore_index = sparse_pred_ignore_index
|
205 |
+
self.reference_compile = reference_compile
|
206 |
+
|
207 |
+
if self.classifier_pooling not in ["cls", "mean"]:
|
208 |
+
raise ValueError(
|
209 |
+
f'Invalid value for `classifier_pooling`, should be either "cls" or "mean", but is {self.classifier_pooling}.'
|
210 |
+
)
|
211 |
+
|
212 |
+
|
213 |
+
__all__ = ["ModernBertConfig"]
|
maker.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python3
|
2 |
+
src="KoichiYasuoka/modernbert-large-japanese-aozora"
|
3 |
+
tgt="KoichiYasuoka/modernbert-large-japanese-aozora-upos"
|
4 |
+
|
5 |
+
import os
|
6 |
+
from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer
|
7 |
+
os.system("test -f ja_gsd_modern.conllu || curl -LO https://github.com/KoichiYasuoka/SuPar-UniDic/raw/main/suparunidic/suparmodels/ja_gsd_modern.conllu")
|
8 |
+
|
9 |
+
class UPOSFileDataset(object):
|
10 |
+
def __init__(self,conllu,tokenizer):
|
11 |
+
self.conllu=open(conllu,"r",encoding="utf-8")
|
12 |
+
self.tokenizer=tokenizer
|
13 |
+
self.seeks=[0]
|
14 |
+
label=set(["SYM"])
|
15 |
+
s=self.conllu.readline()
|
16 |
+
while s!="":
|
17 |
+
if s=="\n":
|
18 |
+
self.seeks.append(self.conllu.tell())
|
19 |
+
else:
|
20 |
+
w=s.split("\t")
|
21 |
+
if len(w)==10:
|
22 |
+
if w[0].isdecimal():
|
23 |
+
label.add(w[3] if w[5]=="_" else w[3]+"|"+w[5])
|
24 |
+
s=self.conllu.readline()
|
25 |
+
lid={}
|
26 |
+
for i,l in enumerate(sorted(label)):
|
27 |
+
lid[l],lid["B-"+l],lid["I-"+l]=i*3,i*3+1,i*3+2
|
28 |
+
self.label2id=lid
|
29 |
+
def __call__(*args):
|
30 |
+
lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))}
|
31 |
+
for t in args:
|
32 |
+
t.label2id=lid
|
33 |
+
return lid
|
34 |
+
def __del__(self):
|
35 |
+
self.conllu.close()
|
36 |
+
__len__=lambda self:len(self.seeks)-1
|
37 |
+
def __getitem__(self,i):
|
38 |
+
self.conllu.seek(self.seeks[i])
|
39 |
+
form,upos=[],[]
|
40 |
+
while self.conllu.tell()<self.seeks[i+1]:
|
41 |
+
w=self.conllu.readline().split("\t")
|
42 |
+
if len(w)==10:
|
43 |
+
form.append(w[1])
|
44 |
+
if w[0].isdecimal():
|
45 |
+
upos.append(w[3] if w[5]=="_" else w[3]+"|"+w[5])
|
46 |
+
v=self.tokenizer(form,add_special_tokens=False)
|
47 |
+
i,u=[],[]
|
48 |
+
for j,(x,y) in enumerate(zip(v["input_ids"],upos)):
|
49 |
+
if x!=[]:
|
50 |
+
i+=x
|
51 |
+
u+=[y] if len(x)==1 else ["B-"+y]+["I-"+y]*(len(x)-1)
|
52 |
+
ids=[self.tokenizer.cls_token_id]+i+[self.tokenizer.sep_token_id]
|
53 |
+
upos=["SYM"]+u+["SYM"]
|
54 |
+
return {"input_ids":ids,"labels":[self.label2id[t] for t in upos]}
|
55 |
+
|
56 |
+
tkz=AutoTokenizer.from_pretrained(src)
|
57 |
+
trainDS=UPOSFileDataset("ja_gsd_modern.conllu",tkz)
|
58 |
+
lid=trainDS.label2id
|
59 |
+
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True,trust_remote_code=True)
|
60 |
+
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=64,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
|
61 |
+
trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True,trust_remote_code=True),train_dataset=trainDS)
|
62 |
+
trn.train()
|
63 |
+
trn.save_model(tgt)
|
64 |
+
tkz.save_pretrained(tgt)
|
modeling_modernbert.py
ADDED
@@ -0,0 +1,1312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from src/transformers/models/modernbert/modular_modernbert.py.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
5 |
+
# modular_modernbert.py file directly. One of our CI enforces this.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# Copyright 2024 Answer.AI, LightOn, and contributors, and the HuggingFace Inc. team. All rights reserved.
|
8 |
+
#
|
9 |
+
#
|
10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
11 |
+
# you may not use this file except in compliance with the License.
|
12 |
+
# You may obtain a copy of the License at
|
13 |
+
#
|
14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
15 |
+
#
|
16 |
+
# Unless required by applicable law or agreed to in writing, software
|
17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
19 |
+
# See the License for the specific language governing permissions and
|
20 |
+
# limitations under the License.
|
21 |
+
|
22 |
+
import math
|
23 |
+
from typing import Dict, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
32 |
+
from transformers.modeling_outputs import BaseModelOutput, MaskedLMOutput, SequenceClassifierOutput, TokenClassifierOutput
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import (
|
35 |
+
add_code_sample_docstrings,
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
is_flash_attn_2_available,
|
39 |
+
logging,
|
40 |
+
)
|
41 |
+
import importlib
|
42 |
+
is_triton_available = lambda: importlib.util.find_spec("triton") is not None
|
43 |
+
from .configuration_modernbert import ModernBertConfig
|
44 |
+
|
45 |
+
|
46 |
+
if is_flash_attn_2_available():
|
47 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
|
48 |
+
from flash_attn.layers.rotary import RotaryEmbedding
|
49 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
50 |
+
else:
|
51 |
+
RotaryEmbedding = object
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "answerdotai/ModernBERT-base"
|
56 |
+
_CONFIG_FOR_DOC = "ModernBertConfig"
|
57 |
+
|
58 |
+
|
59 |
+
class ApplyRotaryEmbUnpad(torch.autograd.Function):
|
60 |
+
@staticmethod
|
61 |
+
def forward(
|
62 |
+
ctx,
|
63 |
+
qkv,
|
64 |
+
cos,
|
65 |
+
sin,
|
66 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
67 |
+
max_seqlen: Optional[int] = None,
|
68 |
+
):
|
69 |
+
# (total_nnz, 3, nheads, headdim)
|
70 |
+
qkv = qkv.contiguous()
|
71 |
+
total_nnz, _three, _nheads, headdim = qkv.shape
|
72 |
+
# We need qkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
|
73 |
+
# we get the same tensor
|
74 |
+
# qk = rearrange(qkv[:, :2], "b_s t h d -> b_s (t h) d")
|
75 |
+
qk = qkv[:, :2].view(total_nnz, -1, headdim)
|
76 |
+
apply_rotary(
|
77 |
+
qk,
|
78 |
+
cos,
|
79 |
+
sin,
|
80 |
+
seqlen_offsets=0,
|
81 |
+
cu_seqlens=cu_seqlens,
|
82 |
+
max_seqlen=max_seqlen,
|
83 |
+
interleaved=False,
|
84 |
+
inplace=True,
|
85 |
+
)
|
86 |
+
|
87 |
+
ctx.save_for_backward(cos, sin, cu_seqlens)
|
88 |
+
ctx.max_seqlen = max_seqlen
|
89 |
+
return qkv
|
90 |
+
|
91 |
+
@staticmethod
|
92 |
+
def backward(ctx, do):
|
93 |
+
cos, sin, cu_seqlens = ctx.saved_tensors
|
94 |
+
do = do.contiguous()
|
95 |
+
total_nnz, _three, _nheads, headdim = do.shape
|
96 |
+
# We need dqkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
|
97 |
+
# we get the same tensor
|
98 |
+
dqk = do[:, :2].view(total_nnz, -1, headdim)
|
99 |
+
apply_rotary(
|
100 |
+
dqk,
|
101 |
+
cos,
|
102 |
+
sin,
|
103 |
+
seqlen_offsets=0,
|
104 |
+
cu_seqlens=cu_seqlens,
|
105 |
+
max_seqlen=ctx.max_seqlen,
|
106 |
+
interleaved=False,
|
107 |
+
inplace=True,
|
108 |
+
conjugate=True,
|
109 |
+
)
|
110 |
+
|
111 |
+
return do, None, None, None, None, None, None
|
112 |
+
|
113 |
+
|
114 |
+
def apply_rotary_unpadded(
|
115 |
+
qkv,
|
116 |
+
cos,
|
117 |
+
sin,
|
118 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
119 |
+
max_seqlen: Optional[int] = None,
|
120 |
+
):
|
121 |
+
"""
|
122 |
+
Arguments:
|
123 |
+
qkv: (total_nnz, 3, nheads, headdim) - input tensor for packed QKV.
|
124 |
+
cos, sin: (seqlen_rotary, rotary_dim / 2)
|
125 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
126 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
127 |
+
inplace: if True, apply rotary embedding in-place.
|
128 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
129 |
+
Most commonly used in inference when we have KV cache.
|
130 |
+
cu_seqlens: (batch + 1,) or None
|
131 |
+
max_seqlen: int
|
132 |
+
Return:
|
133 |
+
out: (total_nnz, dim)
|
134 |
+
rotary_dim must be <= headdim
|
135 |
+
Apply rotary embedding to the first rotary_dim of x.
|
136 |
+
"""
|
137 |
+
return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, cu_seqlens, max_seqlen)
|
138 |
+
|
139 |
+
|
140 |
+
class ModernBertUnpaddedRotaryEmbedding(RotaryEmbedding):
|
141 |
+
"""
|
142 |
+
The rotary position embeddings applied directly to unpadded sequences.
|
143 |
+
"""
|
144 |
+
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
dim: int,
|
148 |
+
base: float = 10000.0,
|
149 |
+
max_seqlen: Optional[int] = None,
|
150 |
+
device: Optional[torch.device] = None,
|
151 |
+
dtype: Optional[torch.dtype] = None,
|
152 |
+
):
|
153 |
+
"""
|
154 |
+
max_seqlen: if max_seqlen, device, and dtype are provided, we precompute the cos_sin_cache
|
155 |
+
up to max_seqlen. If the max_seqlen, device, or dtype during training/inference differ,
|
156 |
+
the cos_sin_cache wll be recomputed during the forward pass.
|
157 |
+
"""
|
158 |
+
super().__init__(dim=dim, base=base, pos_idx_in_fp32=True, device=device, interleaved=False)
|
159 |
+
self.max_seqlen = max_seqlen
|
160 |
+
|
161 |
+
if max_seqlen is not None and device is not None and dtype is not None:
|
162 |
+
self._update_cos_sin_cache(max_seqlen, device=device, dtype=dtype)
|
163 |
+
|
164 |
+
def forward(
|
165 |
+
self,
|
166 |
+
qkv: torch.Tensor,
|
167 |
+
cu_seqlens: torch.Tensor,
|
168 |
+
max_seqlen: Optional[int] = None,
|
169 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
170 |
+
"""
|
171 |
+
Apply rotary embedding *inplace* to qkv.
|
172 |
+
qkv: (total_nnz, 3, nheads, headdim)
|
173 |
+
cu_seqlens: (batch + 1,) cumulative sequence lengths
|
174 |
+
max_seqlen: int max seq length in the batch
|
175 |
+
"""
|
176 |
+
if max_seqlen is not None:
|
177 |
+
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
178 |
+
|
179 |
+
qkv = apply_rotary_unpadded(
|
180 |
+
qkv,
|
181 |
+
self._cos_cached,
|
182 |
+
self._sin_cached,
|
183 |
+
cu_seqlens=cu_seqlens,
|
184 |
+
max_seqlen=max_seqlen,
|
185 |
+
)
|
186 |
+
|
187 |
+
return qkv
|
188 |
+
|
189 |
+
def extra_repr(self) -> str:
|
190 |
+
return f"dim={self.dim}, base={self.base}, scale_base={self.scale_base}"
|
191 |
+
|
192 |
+
|
193 |
+
class ModernBertEmbeddings(nn.Module):
|
194 |
+
"""
|
195 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
196 |
+
"""
|
197 |
+
|
198 |
+
def __init__(self, config: ModernBertConfig):
|
199 |
+
super().__init__()
|
200 |
+
self.config = config
|
201 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
202 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
|
203 |
+
self.drop = nn.Dropout(config.embedding_dropout)
|
204 |
+
|
205 |
+
@torch.compile(dynamic=True)
|
206 |
+
def compiled_embeddings(self, input_ids: torch.LongTensor) -> torch.Tensor:
|
207 |
+
return self.drop(self.norm(self.tok_embeddings(input_ids)))
|
208 |
+
|
209 |
+
def forward(self, input_ids: torch.LongTensor, position_ids: Optional[torch.LongTensor] = None) -> torch.Tensor:
|
210 |
+
hidden_states = (
|
211 |
+
self.compiled_embeddings(input_ids)
|
212 |
+
if self.config.reference_compile
|
213 |
+
else self.drop(self.norm(self.tok_embeddings(input_ids)))
|
214 |
+
)
|
215 |
+
return hidden_states
|
216 |
+
|
217 |
+
|
218 |
+
class ModernBertMLP(nn.Module):
|
219 |
+
"""Applies the GLU at the end of each ModernBERT layer.
|
220 |
+
|
221 |
+
Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate`
|
222 |
+
and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality.
|
223 |
+
"""
|
224 |
+
|
225 |
+
def __init__(self, config: ModernBertConfig):
|
226 |
+
super().__init__()
|
227 |
+
self.config = config
|
228 |
+
self.Wi = nn.Linear(config.hidden_size, int(config.intermediate_size) * 2, bias=config.mlp_bias)
|
229 |
+
self.act = ACT2FN[config.hidden_activation]
|
230 |
+
self.drop = nn.Dropout(config.mlp_dropout)
|
231 |
+
self.Wo = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_bias)
|
232 |
+
|
233 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
234 |
+
input, gate = self.Wi(hidden_states).chunk(2, dim=-1)
|
235 |
+
return self.Wo(self.drop(self.act(input) * gate))
|
236 |
+
|
237 |
+
|
238 |
+
class ModernBertRotaryEmbedding(nn.Module):
|
239 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
240 |
+
super().__init__()
|
241 |
+
|
242 |
+
self.dim = dim
|
243 |
+
self.max_position_embeddings = max_position_embeddings
|
244 |
+
self.base = base
|
245 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
|
246 |
+
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
|
247 |
+
|
248 |
+
@torch.no_grad()
|
249 |
+
def forward(self, x, position_ids, seq_len=None):
|
250 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
251 |
+
self.inv_freq.to(x.device)
|
252 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
253 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
254 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
255 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
256 |
+
device_type = x.device.type
|
257 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
258 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
259 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
260 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
261 |
+
cos = emb.cos()
|
262 |
+
sin = emb.sin()
|
263 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
264 |
+
|
265 |
+
|
266 |
+
def rotate_half(x):
|
267 |
+
"""Rotates half the hidden dims of the input."""
|
268 |
+
x1 = x[..., : x.shape[-1] // 2]
|
269 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
270 |
+
return torch.cat((-x2, x1), dim=-1)
|
271 |
+
|
272 |
+
|
273 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
274 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
275 |
+
|
276 |
+
Args:
|
277 |
+
q (`torch.Tensor`): The query tensor.
|
278 |
+
k (`torch.Tensor`): The key tensor.
|
279 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
280 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
281 |
+
position_ids (`torch.Tensor`, *optional*):
|
282 |
+
Deprecated and unused.
|
283 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
284 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
285 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
286 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
287 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
288 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
289 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
290 |
+
Returns:
|
291 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
292 |
+
"""
|
293 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
294 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
295 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
296 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
297 |
+
return q_embed, k_embed
|
298 |
+
|
299 |
+
|
300 |
+
def eager_attention_forward(
|
301 |
+
module: "ModernBertAttention",
|
302 |
+
qkv: torch.Tensor,
|
303 |
+
attention_mask: torch.Tensor,
|
304 |
+
sliding_window_mask: torch.Tensor,
|
305 |
+
position_ids: Optional[torch.LongTensor],
|
306 |
+
local_attention: Tuple[int, int],
|
307 |
+
bs: int,
|
308 |
+
dim: int,
|
309 |
+
output_attentions: Optional[bool] = False,
|
310 |
+
**_kwargs,
|
311 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
312 |
+
# qkv: [batch_size, seqlen, 3, nheads, headdim]
|
313 |
+
cos, sin = module.rotary_emb(qkv, position_ids=position_ids)
|
314 |
+
query, key, value = qkv.transpose(3, 1).unbind(dim=2)
|
315 |
+
# query, key, value: [batch_size, heads, seq_len, head_dim]
|
316 |
+
query, key = apply_rotary_pos_emb(query, key, cos, sin)
|
317 |
+
|
318 |
+
scale = module.head_dim**-0.5
|
319 |
+
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scale
|
320 |
+
|
321 |
+
if local_attention != (-1, -1):
|
322 |
+
attention_mask = sliding_window_mask
|
323 |
+
|
324 |
+
attn_weights = attn_weights + attention_mask
|
325 |
+
|
326 |
+
# upcast attention to fp32
|
327 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
328 |
+
attn_weights = nn.functional.dropout(attn_weights, p=module.attention_dropout, training=module.training)
|
329 |
+
attn_output = torch.matmul(attn_weights, value)
|
330 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
331 |
+
attn_output = attn_output.view(bs, -1, dim)
|
332 |
+
if output_attentions:
|
333 |
+
return (attn_output, attn_weights)
|
334 |
+
return (attn_output,)
|
335 |
+
|
336 |
+
|
337 |
+
def flash_attention_forward(
|
338 |
+
module: "ModernBertAttention",
|
339 |
+
qkv: torch.Tensor,
|
340 |
+
rotary_emb: ModernBertUnpaddedRotaryEmbedding,
|
341 |
+
cu_seqlens: torch.Tensor,
|
342 |
+
max_seqlen: int,
|
343 |
+
local_attention: Tuple[int, int],
|
344 |
+
bs: int,
|
345 |
+
dim: int,
|
346 |
+
target_dtype: torch.dtype = torch.bfloat16,
|
347 |
+
**_kwargs,
|
348 |
+
) -> Tuple[torch.Tensor]:
|
349 |
+
# (total_seqlen, 3, nheads, headdim)
|
350 |
+
qkv = rotary_emb(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
|
351 |
+
|
352 |
+
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
353 |
+
if convert_dtype:
|
354 |
+
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
|
355 |
+
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
|
356 |
+
orig_dtype = qkv.dtype
|
357 |
+
qkv = qkv.to(target_dtype)
|
358 |
+
|
359 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
360 |
+
qkv,
|
361 |
+
cu_seqlens=cu_seqlens,
|
362 |
+
max_seqlen=max_seqlen,
|
363 |
+
dropout_p=module.attention_dropout if module.training else 0.0,
|
364 |
+
deterministic=module.deterministic_flash_attn,
|
365 |
+
window_size=local_attention,
|
366 |
+
)
|
367 |
+
attn = attn.to(orig_dtype) # type: ignore
|
368 |
+
else:
|
369 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
370 |
+
qkv,
|
371 |
+
cu_seqlens=cu_seqlens,
|
372 |
+
max_seqlen=max_seqlen,
|
373 |
+
dropout_p=module.attention_dropout if module.training else 0.0,
|
374 |
+
deterministic=module.deterministic_flash_attn,
|
375 |
+
window_size=local_attention,
|
376 |
+
)
|
377 |
+
return (attn.view(bs, dim),)
|
378 |
+
|
379 |
+
|
380 |
+
def sdpa_attention_forward(
|
381 |
+
module: "ModernBertAttention",
|
382 |
+
qkv: torch.Tensor,
|
383 |
+
attention_mask: torch.Tensor,
|
384 |
+
sliding_window_mask: torch.Tensor,
|
385 |
+
position_ids: Optional[torch.LongTensor],
|
386 |
+
local_attention: Tuple[int, int],
|
387 |
+
bs: int,
|
388 |
+
dim: int,
|
389 |
+
**_kwargs,
|
390 |
+
) -> Tuple[torch.Tensor]:
|
391 |
+
# qkv: [batch_size, seqlen, 3, nheads, headdim]
|
392 |
+
cos, sin = module.rotary_emb(qkv, position_ids=position_ids)
|
393 |
+
query, key, value = qkv.transpose(3, 1).unbind(dim=2)
|
394 |
+
# query, key, value: [batch_size, heads, seq_len, head_dim]
|
395 |
+
query, key = apply_rotary_pos_emb(query, key, cos, sin)
|
396 |
+
|
397 |
+
if local_attention != (-1, -1):
|
398 |
+
attention_mask = sliding_window_mask
|
399 |
+
|
400 |
+
attn_output = (
|
401 |
+
F.scaled_dot_product_attention(
|
402 |
+
query,
|
403 |
+
key,
|
404 |
+
value,
|
405 |
+
dropout_p=module.attention_dropout if module.training else 0.0,
|
406 |
+
attn_mask=attention_mask,
|
407 |
+
)
|
408 |
+
.transpose(1, 2)
|
409 |
+
.contiguous()
|
410 |
+
)
|
411 |
+
attn_output = attn_output.view(bs, -1, dim)
|
412 |
+
return (attn_output,)
|
413 |
+
|
414 |
+
|
415 |
+
MODERNBERT_ATTENTION_FUNCTION = {
|
416 |
+
"flash_attention_2": flash_attention_forward,
|
417 |
+
"eager": eager_attention_forward,
|
418 |
+
"sdpa": sdpa_attention_forward,
|
419 |
+
}
|
420 |
+
|
421 |
+
|
422 |
+
class ModernBertAttention(nn.Module):
|
423 |
+
"""Performs multi-headed self attention on a batch of unpadded sequences.
|
424 |
+
|
425 |
+
If Flash Attention 2 is installed, this module uses Flash Attention to improve throughput.
|
426 |
+
If Flash Attention 2 is not installed, the implementation will use PyTorch's SDPA kernel,
|
427 |
+
which requires padding and unpadding inputs, adding some overhead.
|
428 |
+
|
429 |
+
See `forward` method for additional details.
|
430 |
+
"""
|
431 |
+
|
432 |
+
def __init__(self, config: ModernBertConfig, layer_id: Optional[int] = None):
|
433 |
+
super().__init__()
|
434 |
+
self.config = config
|
435 |
+
self.layer_id = layer_id
|
436 |
+
|
437 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
438 |
+
raise ValueError(
|
439 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads ({config.num_attention_heads})"
|
440 |
+
)
|
441 |
+
|
442 |
+
self.attention_dropout = config.attention_dropout
|
443 |
+
self.deterministic_flash_attn = config.deterministic_flash_attn
|
444 |
+
self.num_heads = config.num_attention_heads
|
445 |
+
self.head_dim = config.hidden_size // config.num_attention_heads
|
446 |
+
self.all_head_size = self.head_dim * self.num_heads
|
447 |
+
self.Wqkv = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=config.attention_bias)
|
448 |
+
|
449 |
+
if layer_id % config.global_attn_every_n_layers != 0:
|
450 |
+
self.local_attention = (config.local_attention // 2, config.local_attention // 2)
|
451 |
+
else:
|
452 |
+
self.local_attention = (-1, -1)
|
453 |
+
|
454 |
+
rope_theta = config.global_rope_theta
|
455 |
+
max_position_embeddings = config.max_position_embeddings
|
456 |
+
if self.local_attention != (-1, -1):
|
457 |
+
if config.local_rope_theta is not None:
|
458 |
+
rope_theta = config.local_rope_theta
|
459 |
+
max_position_embeddings = config.local_attention
|
460 |
+
|
461 |
+
if config._attn_implementation == "flash_attention_2":
|
462 |
+
self.rotary_emb = ModernBertUnpaddedRotaryEmbedding(
|
463 |
+
dim=self.head_dim, max_seqlen=max_position_embeddings, base=rope_theta
|
464 |
+
)
|
465 |
+
else:
|
466 |
+
self.rotary_emb = ModernBertRotaryEmbedding(
|
467 |
+
dim=self.head_dim, max_position_embeddings=max_position_embeddings, base=rope_theta
|
468 |
+
)
|
469 |
+
|
470 |
+
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
|
471 |
+
self.out_drop = nn.Dropout(config.attention_dropout) if config.attention_dropout > 0.0 else nn.Identity()
|
472 |
+
self.pruned_heads = set()
|
473 |
+
|
474 |
+
def forward(
|
475 |
+
self,
|
476 |
+
hidden_states: torch.Tensor,
|
477 |
+
output_attentions: Optional[bool] = False,
|
478 |
+
**kwargs,
|
479 |
+
) -> torch.Tensor:
|
480 |
+
qkv = self.Wqkv(hidden_states)
|
481 |
+
|
482 |
+
bs = hidden_states.shape[0]
|
483 |
+
if self.config._attn_implementation == "flash_attention_2":
|
484 |
+
qkv = qkv.view(-1, 3, self.num_heads, self.head_dim)
|
485 |
+
else:
|
486 |
+
qkv = qkv.view(bs, -1, 3, self.num_heads, self.head_dim)
|
487 |
+
|
488 |
+
attn_outputs = MODERNBERT_ATTENTION_FUNCTION[self.config._attn_implementation](
|
489 |
+
self,
|
490 |
+
qkv=qkv,
|
491 |
+
rotary_emb=self.rotary_emb,
|
492 |
+
local_attention=self.local_attention,
|
493 |
+
bs=bs,
|
494 |
+
dim=self.all_head_size,
|
495 |
+
output_attentions=output_attentions,
|
496 |
+
**kwargs,
|
497 |
+
)
|
498 |
+
hidden_states = attn_outputs[0]
|
499 |
+
hidden_states = self.out_drop(self.Wo(hidden_states))
|
500 |
+
|
501 |
+
return (hidden_states,) + attn_outputs[1:] # add attentions if outputted
|
502 |
+
|
503 |
+
|
504 |
+
class ModernBertEncoderLayer(nn.Module):
|
505 |
+
def __init__(self, config: ModernBertConfig, layer_id: Optional[int] = None):
|
506 |
+
super().__init__()
|
507 |
+
self.config = config
|
508 |
+
if layer_id == 0:
|
509 |
+
self.attn_norm = nn.Identity()
|
510 |
+
else:
|
511 |
+
self.attn_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
|
512 |
+
self.attn = ModernBertAttention(config=config, layer_id=layer_id)
|
513 |
+
self.mlp_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
|
514 |
+
self.mlp = ModernBertMLP(config)
|
515 |
+
|
516 |
+
@torch.compile(dynamic=True)
|
517 |
+
def compiled_mlp(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
518 |
+
return self.mlp(self.mlp_norm(hidden_states))
|
519 |
+
|
520 |
+
def forward(
|
521 |
+
self,
|
522 |
+
hidden_states: torch.Tensor,
|
523 |
+
attention_mask: Optional[torch.Tensor] = None,
|
524 |
+
sliding_window_mask: Optional[torch.Tensor] = None,
|
525 |
+
position_ids: Optional[torch.LongTensor] = None,
|
526 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
527 |
+
max_seqlen: Optional[int] = None,
|
528 |
+
output_attentions: Optional[bool] = False,
|
529 |
+
) -> torch.Tensor:
|
530 |
+
attn_outputs = self.attn(
|
531 |
+
self.attn_norm(hidden_states),
|
532 |
+
attention_mask=attention_mask,
|
533 |
+
sliding_window_mask=sliding_window_mask,
|
534 |
+
position_ids=position_ids,
|
535 |
+
cu_seqlens=cu_seqlens,
|
536 |
+
max_seqlen=max_seqlen,
|
537 |
+
output_attentions=output_attentions,
|
538 |
+
)
|
539 |
+
hidden_states = hidden_states + attn_outputs[0]
|
540 |
+
mlp_output = (
|
541 |
+
self.compiled_mlp(hidden_states)
|
542 |
+
if self.config.reference_compile
|
543 |
+
else self.mlp(self.mlp_norm(hidden_states))
|
544 |
+
)
|
545 |
+
hidden_states = hidden_states + mlp_output
|
546 |
+
|
547 |
+
return (hidden_states,) + attn_outputs[1:] # add attentions if outputted
|
548 |
+
|
549 |
+
|
550 |
+
MODERNBERT_START_DOCSTRING = r"""
|
551 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
552 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
553 |
+
etc.)
|
554 |
+
|
555 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
556 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
557 |
+
and behavior.
|
558 |
+
|
559 |
+
Parameters:
|
560 |
+
config ([`ModernBertConfig`]):
|
561 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
562 |
+
load the weights associated with the model, only the configuration. Check out the
|
563 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
564 |
+
"""
|
565 |
+
|
566 |
+
|
567 |
+
@add_start_docstrings(
|
568 |
+
"The bare ModernBert Model outputting raw hidden-states without any specific head on top.",
|
569 |
+
MODERNBERT_START_DOCSTRING,
|
570 |
+
)
|
571 |
+
class ModernBertPreTrainedModel(PreTrainedModel):
|
572 |
+
config_class = ModernBertConfig
|
573 |
+
base_model_prefix = "model"
|
574 |
+
supports_gradient_checkpointing = True
|
575 |
+
_no_split_modules = ["ModernBertEmbeddings", "ModernBertEncoderLayer"]
|
576 |
+
_supports_flash_attn_2 = True
|
577 |
+
_supports_sdpa = True
|
578 |
+
_supports_flex_attn = False
|
579 |
+
|
580 |
+
def _init_weights(self, module: nn.Module):
|
581 |
+
cutoff_factor = self.config.initializer_cutoff_factor
|
582 |
+
if cutoff_factor is None:
|
583 |
+
cutoff_factor = 3
|
584 |
+
|
585 |
+
def init_weight(module: nn.Module, std: float):
|
586 |
+
nn.init.trunc_normal_(
|
587 |
+
module.weight,
|
588 |
+
mean=0.0,
|
589 |
+
std=std,
|
590 |
+
a=-cutoff_factor * std,
|
591 |
+
b=cutoff_factor * std,
|
592 |
+
)
|
593 |
+
|
594 |
+
if isinstance(module, nn.Linear):
|
595 |
+
if module.bias is not None:
|
596 |
+
nn.init.zeros_(module.bias)
|
597 |
+
|
598 |
+
stds = {
|
599 |
+
"in": self.config.initializer_range,
|
600 |
+
"out": self.config.initializer_range / math.sqrt(2.0 * self.config.num_hidden_layers),
|
601 |
+
"embedding": self.config.initializer_range,
|
602 |
+
"final_out": self.config.hidden_size**-0.5,
|
603 |
+
}
|
604 |
+
|
605 |
+
if isinstance(module, ModernBertEmbeddings):
|
606 |
+
init_weight(module.tok_embeddings, stds["embedding"])
|
607 |
+
elif isinstance(module, ModernBertMLP):
|
608 |
+
init_weight(module.Wi, stds["in"])
|
609 |
+
init_weight(module.Wo, stds["out"])
|
610 |
+
elif isinstance(module, ModernBertAttention):
|
611 |
+
init_weight(module.Wqkv, stds["in"])
|
612 |
+
init_weight(module.Wo, stds["out"])
|
613 |
+
elif isinstance(module, ModernBertPredictionHead):
|
614 |
+
init_weight(module.dense, stds["out"])
|
615 |
+
elif isinstance(module, ModernBertForMaskedLM):
|
616 |
+
init_weight(module.decoder, stds["out"])
|
617 |
+
elif isinstance(module, (ModernBertForSequenceClassification, ModernBertForTokenClassification)):
|
618 |
+
init_weight(module.classifier, stds["final_out"])
|
619 |
+
|
620 |
+
@classmethod
|
621 |
+
def _autoset_attn_implementation(
|
622 |
+
cls,
|
623 |
+
config,
|
624 |
+
use_flash_attention_2: bool = False,
|
625 |
+
torch_dtype: Optional[torch.dtype] = None,
|
626 |
+
device_map: Optional[Union[str, Dict[str, int]]] = None,
|
627 |
+
check_device_map: bool = True,
|
628 |
+
):
|
629 |
+
# If the user didn't specify anything, try to use flash_attention_2 if available.
|
630 |
+
# Otherwise we fall back to the default SDPA -> Eager from the super() method.
|
631 |
+
if config._attn_implementation_internal is None:
|
632 |
+
config._attn_implementation_internal = "flash_attention_2"
|
633 |
+
try:
|
634 |
+
return cls._check_and_enable_flash_attn_2(
|
635 |
+
config,
|
636 |
+
torch_dtype=torch_dtype,
|
637 |
+
device_map=device_map,
|
638 |
+
hard_check_only=False,
|
639 |
+
check_device_map=check_device_map,
|
640 |
+
)
|
641 |
+
except (ValueError, ImportError):
|
642 |
+
config._attn_implementation_internal = None
|
643 |
+
return super()._autoset_attn_implementation(
|
644 |
+
config,
|
645 |
+
use_flash_attention_2=use_flash_attention_2,
|
646 |
+
torch_dtype=torch_dtype,
|
647 |
+
device_map=device_map,
|
648 |
+
check_device_map=check_device_map,
|
649 |
+
)
|
650 |
+
|
651 |
+
def _maybe_set_compile(self):
|
652 |
+
if self.config.reference_compile is False:
|
653 |
+
return
|
654 |
+
|
655 |
+
if hasattr(self, "hf_device_map") and len(self.hf_device_map) > 1:
|
656 |
+
if self.config.reference_compile:
|
657 |
+
logger.warning_once(
|
658 |
+
"If `accelerate` split the model across devices, `torch.compile` will not work. "
|
659 |
+
"Falling back to non-compiled mode."
|
660 |
+
)
|
661 |
+
self.config.reference_compile = False
|
662 |
+
|
663 |
+
if self.device.type == "mps":
|
664 |
+
if self.config.reference_compile:
|
665 |
+
logger.warning_once(
|
666 |
+
"Compiling the model with `torch.compile` and using a `torch.mps` device is not supported. "
|
667 |
+
"Falling back to non-compiled mode."
|
668 |
+
)
|
669 |
+
self.config.reference_compile = False
|
670 |
+
|
671 |
+
if self.config.reference_compile is None:
|
672 |
+
self.config.reference_compile = is_triton_available()
|
673 |
+
|
674 |
+
def resize_token_embeddings(self, *args, **kwargs):
|
675 |
+
model_embeds = super().resize_token_embeddings(*args, **kwargs)
|
676 |
+
|
677 |
+
if self.config.reference_compile in {True, None}:
|
678 |
+
if self.config.reference_compile:
|
679 |
+
logger.warning_once(
|
680 |
+
"Resizing token embeddings with `torch.compile` is not supported. Falling back to non-compiled mode."
|
681 |
+
)
|
682 |
+
self.config.reference_compile = False
|
683 |
+
|
684 |
+
return model_embeds
|
685 |
+
|
686 |
+
|
687 |
+
def _unpad_modernbert_input(
|
688 |
+
inputs: torch.Tensor,
|
689 |
+
attention_mask: torch.Tensor,
|
690 |
+
position_ids: Optional[torch.Tensor] = None,
|
691 |
+
labels: Optional[torch.Tensor] = None,
|
692 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, Optional[torch.Tensor], Optional[torch.Tensor]]:
|
693 |
+
"""
|
694 |
+
Remove padding from input sequences.
|
695 |
+
|
696 |
+
Args:
|
697 |
+
inputs: (batch, seqlen, ...) or (batch, seqlen)
|
698 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
699 |
+
position_ids: (batch, seqlen), int, position ids
|
700 |
+
labels: (batch, seqlen), int, labels
|
701 |
+
|
702 |
+
Returns:
|
703 |
+
unpadded_inputs: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask.
|
704 |
+
indices: (total_nnz)
|
705 |
+
cu_seqlens: (batch + 1), the cumulative sequence lengths
|
706 |
+
max_seqlen_in_batch: int
|
707 |
+
unpadded_position_ids: (total_nnz) or None
|
708 |
+
unpadded_labels: (total_nnz) or None
|
709 |
+
"""
|
710 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
711 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
712 |
+
max_seqlen_in_batch = int(seqlens_in_batch.max().item())
|
713 |
+
cu_seqlens = torch.nn.functional.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
714 |
+
|
715 |
+
if inputs.dim() == 2:
|
716 |
+
unpadded_inputs = inputs.flatten()[indices]
|
717 |
+
else:
|
718 |
+
batch, seqlen, *rest = inputs.shape
|
719 |
+
shape = batch * seqlen
|
720 |
+
unpadded_inputs = inputs.view(shape, *rest)[indices]
|
721 |
+
|
722 |
+
unpadded_position_ids = position_ids.flatten()[indices] if position_ids is not None else None
|
723 |
+
unpadded_labels = labels.flatten()[indices] if labels is not None else None
|
724 |
+
|
725 |
+
return unpadded_inputs, indices, cu_seqlens, max_seqlen_in_batch, unpadded_position_ids, unpadded_labels
|
726 |
+
|
727 |
+
|
728 |
+
def _pad_modernbert_output(
|
729 |
+
inputs: torch.Tensor,
|
730 |
+
indices: torch.Tensor,
|
731 |
+
batch: int,
|
732 |
+
seqlen: int,
|
733 |
+
) -> torch.Tensor:
|
734 |
+
"""
|
735 |
+
Add padding to sequences.
|
736 |
+
|
737 |
+
Args:
|
738 |
+
inputs: (total_nnz, ...) or (total_nnz,), where total_nnz = number of tokens selected in attention_mask.
|
739 |
+
indices: (total_nnz)
|
740 |
+
batch: int, batch size
|
741 |
+
seqlen: int, max sequence length
|
742 |
+
|
743 |
+
Returns:
|
744 |
+
padded_inputs: (batch, seqlen, ...) or (batch, seqlen)
|
745 |
+
"""
|
746 |
+
if inputs.dim() == 1:
|
747 |
+
output = torch.zeros(batch * seqlen, dtype=inputs.dtype, device=inputs.device)
|
748 |
+
output[indices] = inputs
|
749 |
+
padded_inputs = output.view(batch, seqlen)
|
750 |
+
else:
|
751 |
+
_, *rest = inputs.shape
|
752 |
+
output = torch.zeros(batch * seqlen, *rest, dtype=inputs.dtype, device=inputs.device)
|
753 |
+
output[indices] = inputs
|
754 |
+
padded_inputs = output.view(batch, seqlen, *rest)
|
755 |
+
|
756 |
+
return padded_inputs
|
757 |
+
|
758 |
+
|
759 |
+
MODERNBERT_INPUTS_DOCSTRING = r"""
|
760 |
+
Args:
|
761 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
762 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
763 |
+
it.
|
764 |
+
|
765 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
766 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
767 |
+
|
768 |
+
[What are input IDs?](../glossary#input-ids)
|
769 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
770 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
771 |
+
|
772 |
+
- 1 for tokens that are **not masked**,
|
773 |
+
- 0 for tokens that are **masked**.
|
774 |
+
|
775 |
+
[What are attention masks?](../glossary#attention-mask)
|
776 |
+
|
777 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
778 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
779 |
+
|
780 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
781 |
+
`past_key_values`).
|
782 |
+
|
783 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
784 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
785 |
+
information on the default strategy.
|
786 |
+
|
787 |
+
- 1 indicates the head is **not masked**,
|
788 |
+
- 0 indicates the head is **masked**.
|
789 |
+
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
790 |
+
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
|
791 |
+
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
|
792 |
+
far-away tokens in the local attention layers.
|
793 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
794 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
795 |
+
config.n_positions - 1]`.
|
796 |
+
|
797 |
+
[What are position IDs?](../glossary#position-ids)
|
798 |
+
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
|
799 |
+
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
|
800 |
+
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
|
801 |
+
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
|
802 |
+
max_seqlen (`int`, *optional*):
|
803 |
+
Maximum sequence length in the batch. Used to pad the output tensors.
|
804 |
+
batch_size (`int`, *optional*):
|
805 |
+
Batch size of the input sequences. Used to pad the output tensors.
|
806 |
+
seq_len (`int`, *optional*):
|
807 |
+
Sequence length of the input sequences. Used to pad the output tensors.
|
808 |
+
output_attentions (`bool`, *optional*):
|
809 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
810 |
+
tensors for more detail.
|
811 |
+
output_hidden_states (`bool`, *optional*):
|
812 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
813 |
+
more detail.
|
814 |
+
return_dict (`bool`, *optional*):
|
815 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
816 |
+
"""
|
817 |
+
|
818 |
+
|
819 |
+
@add_start_docstrings(
|
820 |
+
"The bare ModernBert Model outputting raw hidden-states without any specific head on top.",
|
821 |
+
MODERNBERT_START_DOCSTRING,
|
822 |
+
)
|
823 |
+
class ModernBertModel(ModernBertPreTrainedModel):
|
824 |
+
def __init__(self, config: ModernBertConfig):
|
825 |
+
super().__init__(config)
|
826 |
+
self.config = config
|
827 |
+
self.embeddings = ModernBertEmbeddings(config)
|
828 |
+
self.layers = nn.ModuleList(
|
829 |
+
[ModernBertEncoderLayer(config, layer_id) for layer_id in range(config.num_hidden_layers)]
|
830 |
+
)
|
831 |
+
self.final_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
|
832 |
+
self.gradient_checkpointing = False
|
833 |
+
self.post_init()
|
834 |
+
|
835 |
+
def get_input_embeddings(self):
|
836 |
+
return self.embeddings.tok_embeddings
|
837 |
+
|
838 |
+
def set_input_embeddings(self, value):
|
839 |
+
self.embeddings.tok_embeddings = value
|
840 |
+
|
841 |
+
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
|
842 |
+
@add_code_sample_docstrings(
|
843 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
844 |
+
output_type=BaseModelOutput,
|
845 |
+
config_class=_CONFIG_FOR_DOC,
|
846 |
+
)
|
847 |
+
def forward(
|
848 |
+
self,
|
849 |
+
input_ids: torch.LongTensor = None,
|
850 |
+
attention_mask: Optional[torch.Tensor] = None,
|
851 |
+
sliding_window_mask: Optional[torch.Tensor] = None,
|
852 |
+
position_ids: Optional[torch.LongTensor] = None,
|
853 |
+
indices: Optional[torch.Tensor] = None,
|
854 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
855 |
+
max_seqlen: Optional[int] = None,
|
856 |
+
batch_size: Optional[int] = None,
|
857 |
+
seq_len: Optional[int] = None,
|
858 |
+
output_attentions: Optional[bool] = None,
|
859 |
+
output_hidden_states: Optional[bool] = None,
|
860 |
+
return_dict: Optional[bool] = None,
|
861 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutput]:
|
862 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
863 |
+
output_hidden_states = (
|
864 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
865 |
+
)
|
866 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
867 |
+
|
868 |
+
all_hidden_states = () if output_hidden_states else None
|
869 |
+
all_self_attentions = () if output_attentions else None
|
870 |
+
|
871 |
+
self._maybe_set_compile()
|
872 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
873 |
+
|
874 |
+
if batch_size is None and seq_len is None:
|
875 |
+
batch_size, seq_len = input_ids.shape[:2]
|
876 |
+
|
877 |
+
if attention_mask is None:
|
878 |
+
attention_mask = torch.ones((batch_size, seq_len), device=input_ids.device, dtype=torch.bool)
|
879 |
+
|
880 |
+
repad = False
|
881 |
+
if self.config._attn_implementation == "flash_attention_2":
|
882 |
+
if indices is None and cu_seqlens is None and max_seqlen is None:
|
883 |
+
repad = True
|
884 |
+
with torch.no_grad():
|
885 |
+
input_ids, indices, cu_seqlens, max_seqlen, *_ = _unpad_modernbert_input(
|
886 |
+
inputs=input_ids, attention_mask=attention_mask
|
887 |
+
)
|
888 |
+
else:
|
889 |
+
if position_ids is None:
|
890 |
+
position_ids = torch.arange(seq_len, device=input_ids.device).unsqueeze(0)
|
891 |
+
|
892 |
+
attention_mask, sliding_window_mask = self._update_attention_mask(
|
893 |
+
attention_mask, output_attentions=output_attentions
|
894 |
+
)
|
895 |
+
|
896 |
+
hidden_states = self.embeddings(input_ids)
|
897 |
+
|
898 |
+
for encoder_layer in self.layers:
|
899 |
+
if output_hidden_states:
|
900 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
901 |
+
|
902 |
+
if self.gradient_checkpointing and self.training:
|
903 |
+
layer_outputs = self._gradient_checkpointing_func(
|
904 |
+
encoder_layer.__call__,
|
905 |
+
hidden_states,
|
906 |
+
attention_mask,
|
907 |
+
sliding_window_mask,
|
908 |
+
position_ids,
|
909 |
+
cu_seqlens,
|
910 |
+
max_seqlen,
|
911 |
+
output_attentions,
|
912 |
+
)
|
913 |
+
else:
|
914 |
+
layer_outputs = encoder_layer(
|
915 |
+
hidden_states,
|
916 |
+
attention_mask=attention_mask,
|
917 |
+
sliding_window_mask=sliding_window_mask,
|
918 |
+
position_ids=position_ids,
|
919 |
+
cu_seqlens=cu_seqlens,
|
920 |
+
max_seqlen=max_seqlen,
|
921 |
+
output_attentions=output_attentions,
|
922 |
+
)
|
923 |
+
hidden_states = layer_outputs[0]
|
924 |
+
if output_attentions and len(layer_outputs) > 1:
|
925 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
926 |
+
|
927 |
+
if output_hidden_states:
|
928 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
929 |
+
|
930 |
+
hidden_states = self.final_norm(hidden_states)
|
931 |
+
|
932 |
+
if repad:
|
933 |
+
hidden_states = _pad_modernbert_output(
|
934 |
+
inputs=hidden_states, indices=indices, batch=batch_size, seqlen=seq_len
|
935 |
+
)
|
936 |
+
if all_hidden_states is not None:
|
937 |
+
all_hidden_states = tuple(
|
938 |
+
_pad_modernbert_output(inputs=hs, indices=indices, batch=batch_size, seqlen=seq_len)
|
939 |
+
for hs in all_hidden_states
|
940 |
+
)
|
941 |
+
|
942 |
+
if not return_dict:
|
943 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
944 |
+
return BaseModelOutput(
|
945 |
+
last_hidden_state=hidden_states,
|
946 |
+
hidden_states=all_hidden_states,
|
947 |
+
attentions=all_self_attentions,
|
948 |
+
)
|
949 |
+
|
950 |
+
def _update_attention_mask(self, attention_mask: torch.Tensor, output_attentions: bool) -> torch.Tensor:
|
951 |
+
if output_attentions:
|
952 |
+
if self.config._attn_implementation == "sdpa":
|
953 |
+
logger.warning_once(
|
954 |
+
"Outputting attentions is only supported with the 'eager' attention implementation, "
|
955 |
+
'not with "sdpa". Falling back to `attn_implementation="eager"`.'
|
956 |
+
)
|
957 |
+
self.config._attn_implementation = "eager"
|
958 |
+
elif self.config._attn_implementation != "eager":
|
959 |
+
logger.warning_once(
|
960 |
+
"Outputting attentions is only supported with the eager attention implementation, "
|
961 |
+
f'not with {self.config._attn_implementation}. Consider setting `attn_implementation="eager"`.'
|
962 |
+
" Setting `output_attentions=False`."
|
963 |
+
)
|
964 |
+
|
965 |
+
global_attention_mask = _prepare_4d_attention_mask(attention_mask, self.dtype)
|
966 |
+
|
967 |
+
# Create position indices
|
968 |
+
rows = torch.arange(global_attention_mask.shape[2]).unsqueeze(0)
|
969 |
+
# Calculate distance between positions
|
970 |
+
distance = torch.abs(rows - rows.T)
|
971 |
+
|
972 |
+
# Create sliding window mask (1 for positions within window, 0 outside)
|
973 |
+
window_mask = (
|
974 |
+
(distance <= self.config.local_attention // 2).unsqueeze(0).unsqueeze(0).to(attention_mask.device)
|
975 |
+
)
|
976 |
+
# Combine with existing mask
|
977 |
+
sliding_window_mask = global_attention_mask.masked_fill(window_mask.logical_not(), torch.finfo(self.dtype).min)
|
978 |
+
|
979 |
+
return global_attention_mask, sliding_window_mask
|
980 |
+
|
981 |
+
|
982 |
+
class ModernBertPredictionHead(nn.Module):
|
983 |
+
def __init__(self, config: ModernBertConfig):
|
984 |
+
super().__init__()
|
985 |
+
self.config = config
|
986 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.classifier_bias)
|
987 |
+
self.act = ACT2FN[config.classifier_activation]
|
988 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
|
989 |
+
|
990 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
991 |
+
return self.norm(self.act(self.dense(hidden_states)))
|
992 |
+
|
993 |
+
|
994 |
+
@add_start_docstrings(
|
995 |
+
"The ModernBert Model with a decoder head on top that is used for masked language modeling.",
|
996 |
+
MODERNBERT_START_DOCSTRING,
|
997 |
+
)
|
998 |
+
class ModernBertForMaskedLM(ModernBertPreTrainedModel):
|
999 |
+
_tied_weights_keys = ["decoder.weight"]
|
1000 |
+
|
1001 |
+
def __init__(self, config: ModernBertConfig):
|
1002 |
+
super().__init__(config)
|
1003 |
+
self.config = config
|
1004 |
+
self.model = ModernBertModel(config)
|
1005 |
+
self.head = ModernBertPredictionHead(config)
|
1006 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=config.decoder_bias)
|
1007 |
+
|
1008 |
+
self.sparse_prediction = self.config.sparse_prediction
|
1009 |
+
self.sparse_pred_ignore_index = self.config.sparse_pred_ignore_index
|
1010 |
+
|
1011 |
+
# Initialize weights and apply final processing
|
1012 |
+
self.post_init()
|
1013 |
+
|
1014 |
+
def get_output_embeddings(self):
|
1015 |
+
return self.decoder
|
1016 |
+
|
1017 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear):
|
1018 |
+
self.decoder = new_embeddings
|
1019 |
+
|
1020 |
+
@torch.compile(dynamic=True)
|
1021 |
+
def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
|
1022 |
+
return self.decoder(self.head(output))
|
1023 |
+
|
1024 |
+
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
|
1025 |
+
@add_code_sample_docstrings(
|
1026 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1027 |
+
output_type=MaskedLMOutput,
|
1028 |
+
config_class=_CONFIG_FOR_DOC,
|
1029 |
+
)
|
1030 |
+
def forward(
|
1031 |
+
self,
|
1032 |
+
input_ids: Optional[torch.Tensor],
|
1033 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1034 |
+
sliding_window_mask: Optional[torch.Tensor] = None,
|
1035 |
+
position_ids: Optional[torch.Tensor] = None,
|
1036 |
+
labels: Optional[torch.Tensor] = None,
|
1037 |
+
indices: Optional[torch.Tensor] = None,
|
1038 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
1039 |
+
max_seqlen: Optional[int] = None,
|
1040 |
+
batch_size: Optional[int] = None,
|
1041 |
+
seq_len: Optional[int] = None,
|
1042 |
+
output_attentions: Optional[bool] = None,
|
1043 |
+
output_hidden_states: Optional[bool] = None,
|
1044 |
+
return_dict: Optional[bool] = None,
|
1045 |
+
**kwargs,
|
1046 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1047 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1048 |
+
self._maybe_set_compile()
|
1049 |
+
|
1050 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1051 |
+
if indices is None and cu_seqlens is None and max_seqlen is None:
|
1052 |
+
batch_size, seq_len = input_ids.shape[:2]
|
1053 |
+
if attention_mask is None:
|
1054 |
+
attention_mask = torch.ones((batch_size, seq_len), device=input_ids.device, dtype=torch.bool)
|
1055 |
+
with torch.no_grad():
|
1056 |
+
input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
|
1057 |
+
inputs=input_ids, attention_mask=attention_mask, position_ids=position_ids, labels=labels
|
1058 |
+
)
|
1059 |
+
|
1060 |
+
outputs = self.model(
|
1061 |
+
input_ids,
|
1062 |
+
attention_mask=attention_mask,
|
1063 |
+
sliding_window_mask=sliding_window_mask,
|
1064 |
+
position_ids=position_ids,
|
1065 |
+
indices=indices,
|
1066 |
+
cu_seqlens=cu_seqlens,
|
1067 |
+
max_seqlen=max_seqlen,
|
1068 |
+
batch_size=batch_size,
|
1069 |
+
seq_len=seq_len,
|
1070 |
+
output_attentions=output_attentions,
|
1071 |
+
output_hidden_states=output_hidden_states,
|
1072 |
+
return_dict=return_dict,
|
1073 |
+
)
|
1074 |
+
last_hidden_state = outputs[0]
|
1075 |
+
|
1076 |
+
if self.sparse_prediction and labels is not None:
|
1077 |
+
# flatten labels and output first
|
1078 |
+
labels = labels.view(-1)
|
1079 |
+
last_hidden_state = last_hidden_state.view(labels.shape[0], -1)
|
1080 |
+
|
1081 |
+
# then filter out the non-masked tokens
|
1082 |
+
mask_tokens = labels != self.sparse_pred_ignore_index
|
1083 |
+
last_hidden_state = last_hidden_state[mask_tokens]
|
1084 |
+
labels = labels[mask_tokens]
|
1085 |
+
|
1086 |
+
logits = (
|
1087 |
+
self.compiled_head(last_hidden_state)
|
1088 |
+
if self.config.reference_compile
|
1089 |
+
else self.decoder(self.head(last_hidden_state))
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
loss = None
|
1093 |
+
if labels is not None:
|
1094 |
+
loss = self.loss_function(logits, labels, vocab_size=self.config.vocab_size)
|
1095 |
+
|
1096 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1097 |
+
with torch.no_grad():
|
1098 |
+
logits = _pad_modernbert_output(inputs=logits, indices=indices, batch=batch_size, seqlen=seq_len)
|
1099 |
+
if not return_dict:
|
1100 |
+
output = (logits,)
|
1101 |
+
return ((loss,) + output) if loss is not None else output
|
1102 |
+
|
1103 |
+
return MaskedLMOutput(
|
1104 |
+
loss=loss,
|
1105 |
+
logits=logits,
|
1106 |
+
hidden_states=outputs.hidden_states,
|
1107 |
+
attentions=outputs.attentions,
|
1108 |
+
)
|
1109 |
+
|
1110 |
+
|
1111 |
+
@add_start_docstrings(
|
1112 |
+
"The ModernBert Model with a sequence classification head on top that performs pooling.",
|
1113 |
+
MODERNBERT_START_DOCSTRING,
|
1114 |
+
)
|
1115 |
+
class ModernBertForSequenceClassification(ModernBertPreTrainedModel):
|
1116 |
+
def __init__(self, config: ModernBertConfig):
|
1117 |
+
super().__init__(config)
|
1118 |
+
self.num_labels = config.num_labels
|
1119 |
+
self.config = config
|
1120 |
+
|
1121 |
+
self.model = ModernBertModel(config)
|
1122 |
+
self.head = ModernBertPredictionHead(config)
|
1123 |
+
self.drop = torch.nn.Dropout(config.classifier_dropout)
|
1124 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1125 |
+
|
1126 |
+
# Initialize weights and apply final processing
|
1127 |
+
self.post_init()
|
1128 |
+
|
1129 |
+
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
|
1130 |
+
@add_code_sample_docstrings(
|
1131 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1132 |
+
output_type=SequenceClassifierOutput,
|
1133 |
+
config_class=_CONFIG_FOR_DOC,
|
1134 |
+
)
|
1135 |
+
def forward(
|
1136 |
+
self,
|
1137 |
+
input_ids: Optional[torch.Tensor],
|
1138 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1139 |
+
sliding_window_mask: Optional[torch.Tensor] = None,
|
1140 |
+
position_ids: Optional[torch.Tensor] = None,
|
1141 |
+
labels: Optional[torch.Tensor] = None,
|
1142 |
+
indices: Optional[torch.Tensor] = None,
|
1143 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
1144 |
+
max_seqlen: Optional[int] = None,
|
1145 |
+
batch_size: Optional[int] = None,
|
1146 |
+
seq_len: Optional[int] = None,
|
1147 |
+
output_attentions: Optional[bool] = None,
|
1148 |
+
output_hidden_states: Optional[bool] = None,
|
1149 |
+
return_dict: Optional[bool] = None,
|
1150 |
+
**kwargs,
|
1151 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1152 |
+
r"""
|
1153 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1154 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1155 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1156 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1157 |
+
"""
|
1158 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1159 |
+
self._maybe_set_compile()
|
1160 |
+
|
1161 |
+
outputs = self.model(
|
1162 |
+
input_ids,
|
1163 |
+
attention_mask=attention_mask,
|
1164 |
+
sliding_window_mask=sliding_window_mask,
|
1165 |
+
position_ids=position_ids,
|
1166 |
+
indices=indices,
|
1167 |
+
cu_seqlens=cu_seqlens,
|
1168 |
+
max_seqlen=max_seqlen,
|
1169 |
+
batch_size=batch_size,
|
1170 |
+
seq_len=seq_len,
|
1171 |
+
output_attentions=output_attentions,
|
1172 |
+
output_hidden_states=output_hidden_states,
|
1173 |
+
return_dict=return_dict,
|
1174 |
+
)
|
1175 |
+
last_hidden_state = outputs[0]
|
1176 |
+
|
1177 |
+
if self.config.classifier_pooling == "cls":
|
1178 |
+
last_hidden_state = last_hidden_state[:, 0]
|
1179 |
+
elif self.config.classifier_pooling == "mean":
|
1180 |
+
last_hidden_state = (last_hidden_state * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(
|
1181 |
+
dim=1, keepdim=True
|
1182 |
+
)
|
1183 |
+
|
1184 |
+
pooled_output = self.head(last_hidden_state)
|
1185 |
+
pooled_output = self.drop(pooled_output)
|
1186 |
+
logits = self.classifier(pooled_output)
|
1187 |
+
|
1188 |
+
loss = None
|
1189 |
+
if labels is not None:
|
1190 |
+
if self.config.problem_type is None:
|
1191 |
+
if self.num_labels == 1:
|
1192 |
+
self.config.problem_type = "regression"
|
1193 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1194 |
+
self.config.problem_type = "single_label_classification"
|
1195 |
+
else:
|
1196 |
+
self.config.problem_type = "multi_label_classification"
|
1197 |
+
|
1198 |
+
if self.config.problem_type == "regression":
|
1199 |
+
loss_fct = MSELoss()
|
1200 |
+
if self.num_labels == 1:
|
1201 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1202 |
+
else:
|
1203 |
+
loss = loss_fct(logits, labels)
|
1204 |
+
elif self.config.problem_type == "single_label_classification":
|
1205 |
+
loss_fct = CrossEntropyLoss()
|
1206 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1207 |
+
elif self.config.problem_type == "multi_label_classification":
|
1208 |
+
loss_fct = BCEWithLogitsLoss()
|
1209 |
+
loss = loss_fct(logits, labels)
|
1210 |
+
|
1211 |
+
if not return_dict:
|
1212 |
+
output = (logits,)
|
1213 |
+
return ((loss,) + output) if loss is not None else output
|
1214 |
+
|
1215 |
+
return SequenceClassifierOutput(
|
1216 |
+
loss=loss,
|
1217 |
+
logits=logits,
|
1218 |
+
hidden_states=outputs.hidden_states,
|
1219 |
+
attentions=outputs.attentions,
|
1220 |
+
)
|
1221 |
+
|
1222 |
+
|
1223 |
+
@add_start_docstrings(
|
1224 |
+
"The ModernBert Model with a token classification head on top, e.g. for Named Entity Recognition (NER) tasks.",
|
1225 |
+
MODERNBERT_START_DOCSTRING,
|
1226 |
+
)
|
1227 |
+
class ModernBertForTokenClassification(ModernBertPreTrainedModel):
|
1228 |
+
def __init__(self, config: ModernBertConfig):
|
1229 |
+
super().__init__(config)
|
1230 |
+
self.num_labels = config.num_labels
|
1231 |
+
|
1232 |
+
self.model = ModernBertModel(config)
|
1233 |
+
self.head = ModernBertPredictionHead(config)
|
1234 |
+
self.drop = torch.nn.Dropout(config.classifier_dropout)
|
1235 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1236 |
+
|
1237 |
+
# Initialize weights and apply final processing
|
1238 |
+
self.post_init()
|
1239 |
+
|
1240 |
+
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
|
1241 |
+
@add_code_sample_docstrings(
|
1242 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1243 |
+
output_type=TokenClassifierOutput,
|
1244 |
+
config_class=_CONFIG_FOR_DOC,
|
1245 |
+
)
|
1246 |
+
def forward(
|
1247 |
+
self,
|
1248 |
+
input_ids: Optional[torch.Tensor],
|
1249 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1250 |
+
sliding_window_mask: Optional[torch.Tensor] = None,
|
1251 |
+
position_ids: Optional[torch.Tensor] = None,
|
1252 |
+
labels: Optional[torch.Tensor] = None,
|
1253 |
+
indices: Optional[torch.Tensor] = None,
|
1254 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
1255 |
+
max_seqlen: Optional[int] = None,
|
1256 |
+
batch_size: Optional[int] = None,
|
1257 |
+
seq_len: Optional[int] = None,
|
1258 |
+
output_attentions: Optional[bool] = None,
|
1259 |
+
output_hidden_states: Optional[bool] = None,
|
1260 |
+
return_dict: Optional[bool] = None,
|
1261 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1262 |
+
r"""
|
1263 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1264 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1265 |
+
"""
|
1266 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1267 |
+
self._maybe_set_compile()
|
1268 |
+
|
1269 |
+
outputs = self.model(
|
1270 |
+
input_ids,
|
1271 |
+
attention_mask=attention_mask,
|
1272 |
+
sliding_window_mask=sliding_window_mask,
|
1273 |
+
position_ids=position_ids,
|
1274 |
+
indices=indices,
|
1275 |
+
cu_seqlens=cu_seqlens,
|
1276 |
+
max_seqlen=max_seqlen,
|
1277 |
+
batch_size=batch_size,
|
1278 |
+
seq_len=seq_len,
|
1279 |
+
output_attentions=output_attentions,
|
1280 |
+
output_hidden_states=output_hidden_states,
|
1281 |
+
return_dict=return_dict,
|
1282 |
+
)
|
1283 |
+
last_hidden_state = outputs[0]
|
1284 |
+
|
1285 |
+
last_hidden_state = self.head(last_hidden_state)
|
1286 |
+
last_hidden_state = self.drop(last_hidden_state)
|
1287 |
+
logits = self.classifier(last_hidden_state)
|
1288 |
+
|
1289 |
+
loss = None
|
1290 |
+
if labels is not None:
|
1291 |
+
loss_fct = CrossEntropyLoss()
|
1292 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1293 |
+
|
1294 |
+
if not return_dict:
|
1295 |
+
output = (logits,) + outputs[1:]
|
1296 |
+
return ((loss,) + output) if loss is not None else output
|
1297 |
+
|
1298 |
+
return TokenClassifierOutput(
|
1299 |
+
loss=loss,
|
1300 |
+
logits=logits,
|
1301 |
+
hidden_states=outputs.hidden_states,
|
1302 |
+
attentions=outputs.attentions,
|
1303 |
+
)
|
1304 |
+
|
1305 |
+
|
1306 |
+
__all__ = [
|
1307 |
+
"ModernBertModel",
|
1308 |
+
"ModernBertPreTrainedModel",
|
1309 |
+
"ModernBertForMaskedLM",
|
1310 |
+
"ModernBertForSequenceClassification",
|
1311 |
+
"ModernBertForTokenClassification",
|
1312 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8553e86c471c646ffbe1109b14bd0d1abd51b96689706f4a7994634a1e8faf5
|
3 |
+
size 1643561026
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_lower_case": false,
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"extra_special_tokens": {},
|
50 |
+
"keep_accents": true,
|
51 |
+
"mask_token": "[MASK]",
|
52 |
+
"model_input_names": [
|
53 |
+
"input_ids",
|
54 |
+
"attention_mask"
|
55 |
+
],
|
56 |
+
"model_max_length": 1000000000000000019884624838656,
|
57 |
+
"pad_token": "[PAD]",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"split_by_punct": true,
|
60 |
+
"tokenizer_class": "DebertaV2TokenizerFast",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
upos.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TokenClassificationPipeline
|
2 |
+
|
3 |
+
class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
|
4 |
+
def __init__(self,**kwargs):
|
5 |
+
import numpy
|
6 |
+
super().__init__(**kwargs)
|
7 |
+
x=self.model.config.label2id
|
8 |
+
y=[k for k in x if not k.startswith("I-")]
|
9 |
+
self.transition=numpy.full((len(x),len(x)),numpy.nan)
|
10 |
+
for k,v in x.items():
|
11 |
+
for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
|
12 |
+
self.transition[v,x[j]]=0
|
13 |
+
def check_model_type(self,supported_models):
|
14 |
+
pass
|
15 |
+
def postprocess(self,model_outputs,**kwargs):
|
16 |
+
import numpy
|
17 |
+
if "logits" not in model_outputs:
|
18 |
+
return self.postprocess(model_outputs[0],**kwargs)
|
19 |
+
m=model_outputs["logits"][0].numpy()
|
20 |
+
e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
|
21 |
+
z=e/e.sum(axis=-1,keepdims=True)
|
22 |
+
for i in range(m.shape[0]-1,0,-1):
|
23 |
+
m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
|
24 |
+
k=[numpy.nanargmax(m[0]+self.transition[0])]
|
25 |
+
for i in range(1,m.shape[0]):
|
26 |
+
k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
|
27 |
+
w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
|
28 |
+
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
|
29 |
+
for i,t in reversed(list(enumerate(w))):
|
30 |
+
p=t.pop("entity")
|
31 |
+
if p.startswith("I-"):
|
32 |
+
w[i-1]["score"]=min(w[i-1]["score"],t["score"])
|
33 |
+
w[i-1]["end"]=w.pop(i)["end"]
|
34 |
+
elif p.startswith("B-"):
|
35 |
+
t["entity_group"]=p[2:]
|
36 |
+
else:
|
37 |
+
t["entity_group"]=p
|
38 |
+
for t in w:
|
39 |
+
t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
|
40 |
+
return w
|
41 |
+
|