File size: 54,181 Bytes
37eaef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
#           This file was automatically generated from src/transformers/models/modernbert/modular_modernbert.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_modernbert.py file directly. One of our CI enforces this.
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Copyright 2024 Answer.AI, LightOn, and contributors, and the HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Dict, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from transformers.modeling_outputs import BaseModelOutput, MaskedLMOutput, SequenceClassifierOutput, TokenClassifierOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    logging,
)
import importlib
is_triton_available = lambda: importlib.util.find_spec("triton") is not None
from .configuration_modernbert import ModernBertConfig


if is_flash_attn_2_available():
    from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
    from flash_attn.layers.rotary import RotaryEmbedding
    from flash_attn.ops.triton.rotary import apply_rotary
else:
    RotaryEmbedding = object

logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "answerdotai/ModernBERT-base"
_CONFIG_FOR_DOC = "ModernBertConfig"


class ApplyRotaryEmbUnpad(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx,
        qkv,
        cos,
        sin,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seqlen: Optional[int] = None,
    ):
        # (total_nnz, 3, nheads, headdim)
        qkv = qkv.contiguous()
        total_nnz, _three, _nheads, headdim = qkv.shape
        # We need qkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
        # we get the same tensor
        # qk = rearrange(qkv[:, :2], "b_s t h d -> b_s (t h) d")
        qk = qkv[:, :2].view(total_nnz, -1, headdim)
        apply_rotary(
            qk,
            cos,
            sin,
            seqlen_offsets=0,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            interleaved=False,
            inplace=True,
        )

        ctx.save_for_backward(cos, sin, cu_seqlens)
        ctx.max_seqlen = max_seqlen
        return qkv

    @staticmethod
    def backward(ctx, do):
        cos, sin, cu_seqlens = ctx.saved_tensors
        do = do.contiguous()
        total_nnz, _three, _nheads, headdim = do.shape
        # We need dqkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
        # we get the same tensor
        dqk = do[:, :2].view(total_nnz, -1, headdim)
        apply_rotary(
            dqk,
            cos,
            sin,
            seqlen_offsets=0,
            cu_seqlens=cu_seqlens,
            max_seqlen=ctx.max_seqlen,
            interleaved=False,
            inplace=True,
            conjugate=True,
        )

        return do, None, None, None, None, None, None


def apply_rotary_unpadded(
    qkv,
    cos,
    sin,
    cu_seqlens: Optional[torch.Tensor] = None,
    max_seqlen: Optional[int] = None,
):
    """
    Arguments:
        qkv: (total_nnz, 3, nheads, headdim) - input tensor for packed QKV.
        cos, sin: (seqlen_rotary, rotary_dim / 2)
        interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
            of 1st half and 2nd half (GPT-NeoX style).
        inplace: if True, apply rotary embedding in-place.
        seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
            Most commonly used in inference when we have KV cache.
        cu_seqlens: (batch + 1,) or None
        max_seqlen: int
    Return:
        out: (total_nnz, dim)
    rotary_dim must be <= headdim
    Apply rotary embedding to the first rotary_dim of x.
    """
    return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, cu_seqlens, max_seqlen)


class ModernBertUnpaddedRotaryEmbedding(RotaryEmbedding):
    """
    The rotary position embeddings applied directly to unpadded sequences.
    """

    def __init__(
        self,
        dim: int,
        base: float = 10000.0,
        max_seqlen: Optional[int] = None,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        """
        max_seqlen: if max_seqlen, device, and dtype are provided, we precompute the cos_sin_cache
            up to max_seqlen. If the max_seqlen, device, or dtype during training/inference differ,
            the cos_sin_cache wll be recomputed during the forward pass.
        """
        super().__init__(dim=dim, base=base, pos_idx_in_fp32=True, device=device, interleaved=False)
        self.max_seqlen = max_seqlen

        if max_seqlen is not None and device is not None and dtype is not None:
            self._update_cos_sin_cache(max_seqlen, device=device, dtype=dtype)

    def forward(
        self,
        qkv: torch.Tensor,
        cu_seqlens: torch.Tensor,
        max_seqlen: Optional[int] = None,
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """
        Apply rotary embedding *inplace* to qkv.
        qkv: (total_nnz, 3, nheads, headdim)
        cu_seqlens: (batch + 1,) cumulative sequence lengths
        max_seqlen: int max seq length in the batch
        """
        if max_seqlen is not None:
            self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)

        qkv = apply_rotary_unpadded(
            qkv,
            self._cos_cached,
            self._sin_cached,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
        )

        return qkv

    def extra_repr(self) -> str:
        return f"dim={self.dim}, base={self.base}, scale_base={self.scale_base}"


class ModernBertEmbeddings(nn.Module):
    """
    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
    """

    def __init__(self, config: ModernBertConfig):
        super().__init__()
        self.config = config
        self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
        self.drop = nn.Dropout(config.embedding_dropout)

    @torch.compile(dynamic=True)
    def compiled_embeddings(self, input_ids: torch.LongTensor) -> torch.Tensor:
        return self.drop(self.norm(self.tok_embeddings(input_ids)))

    def forward(self, input_ids: torch.LongTensor, position_ids: Optional[torch.LongTensor] = None) -> torch.Tensor:
        hidden_states = (
            self.compiled_embeddings(input_ids)
            if self.config.reference_compile
            else self.drop(self.norm(self.tok_embeddings(input_ids)))
        )
        return hidden_states


class ModernBertMLP(nn.Module):
    """Applies the GLU at the end of each ModernBERT layer.

    Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate`
    and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality.
    """

    def __init__(self, config: ModernBertConfig):
        super().__init__()
        self.config = config
        self.Wi = nn.Linear(config.hidden_size, int(config.intermediate_size) * 2, bias=config.mlp_bias)
        self.act = ACT2FN[config.hidden_activation]
        self.drop = nn.Dropout(config.mlp_dropout)
        self.Wo = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_bias)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        input, gate = self.Wi(hidden_states).chunk(2, dim=-1)
        return self.Wo(self.drop(self.act(input) * gate))


class ModernBertRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
        self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)

    @torch.no_grad()
    def forward(self, x, position_ids, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        self.inv_freq.to(x.device)
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()
        # Force float32 since bfloat16 loses precision on long contexts
        # See https://github.com/huggingface/transformers/pull/29285
        device_type = x.device.type
        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()
        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def eager_attention_forward(
    module: "ModernBertAttention",
    qkv: torch.Tensor,
    attention_mask: torch.Tensor,
    sliding_window_mask: torch.Tensor,
    position_ids: Optional[torch.LongTensor],
    local_attention: Tuple[int, int],
    bs: int,
    dim: int,
    output_attentions: Optional[bool] = False,
    **_kwargs,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
    # qkv: [batch_size, seqlen, 3, nheads, headdim]
    cos, sin = module.rotary_emb(qkv, position_ids=position_ids)
    query, key, value = qkv.transpose(3, 1).unbind(dim=2)
    # query, key, value: [batch_size, heads, seq_len, head_dim]
    query, key = apply_rotary_pos_emb(query, key, cos, sin)

    scale = module.head_dim**-0.5
    attn_weights = torch.matmul(query, key.transpose(2, 3)) * scale

    if local_attention != (-1, -1):
        attention_mask = sliding_window_mask

    attn_weights = attn_weights + attention_mask

    # upcast attention to fp32
    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=module.attention_dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value)
    attn_output = attn_output.transpose(1, 2).contiguous()
    attn_output = attn_output.view(bs, -1, dim)
    if output_attentions:
        return (attn_output, attn_weights)
    return (attn_output,)


def flash_attention_forward(
    module: "ModernBertAttention",
    qkv: torch.Tensor,
    rotary_emb: ModernBertUnpaddedRotaryEmbedding,
    cu_seqlens: torch.Tensor,
    max_seqlen: int,
    local_attention: Tuple[int, int],
    bs: int,
    dim: int,
    target_dtype: torch.dtype = torch.bfloat16,
    **_kwargs,
) -> Tuple[torch.Tensor]:
    # (total_seqlen, 3, nheads, headdim)
    qkv = rotary_emb(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)

    convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
    if convert_dtype:
        # FA2 implementation only supports fp16 and bf16. If FA2 is supported,
        # bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
        orig_dtype = qkv.dtype
        qkv = qkv.to(target_dtype)

        attn = flash_attn_varlen_qkvpacked_func(
            qkv,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            dropout_p=module.attention_dropout if module.training else 0.0,
            deterministic=module.deterministic_flash_attn,
            window_size=local_attention,
        )
        attn = attn.to(orig_dtype)  # type: ignore
    else:
        attn = flash_attn_varlen_qkvpacked_func(
            qkv,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            dropout_p=module.attention_dropout if module.training else 0.0,
            deterministic=module.deterministic_flash_attn,
            window_size=local_attention,
        )
    return (attn.view(bs, dim),)


def sdpa_attention_forward(
    module: "ModernBertAttention",
    qkv: torch.Tensor,
    attention_mask: torch.Tensor,
    sliding_window_mask: torch.Tensor,
    position_ids: Optional[torch.LongTensor],
    local_attention: Tuple[int, int],
    bs: int,
    dim: int,
    **_kwargs,
) -> Tuple[torch.Tensor]:
    # qkv: [batch_size, seqlen, 3, nheads, headdim]
    cos, sin = module.rotary_emb(qkv, position_ids=position_ids)
    query, key, value = qkv.transpose(3, 1).unbind(dim=2)
    # query, key, value: [batch_size, heads, seq_len, head_dim]
    query, key = apply_rotary_pos_emb(query, key, cos, sin)

    if local_attention != (-1, -1):
        attention_mask = sliding_window_mask

    attn_output = (
        F.scaled_dot_product_attention(
            query,
            key,
            value,
            dropout_p=module.attention_dropout if module.training else 0.0,
            attn_mask=attention_mask,
        )
        .transpose(1, 2)
        .contiguous()
    )
    attn_output = attn_output.view(bs, -1, dim)
    return (attn_output,)


MODERNBERT_ATTENTION_FUNCTION = {
    "flash_attention_2": flash_attention_forward,
    "eager": eager_attention_forward,
    "sdpa": sdpa_attention_forward,
}


class ModernBertAttention(nn.Module):
    """Performs multi-headed self attention on a batch of unpadded sequences.

    If Flash Attention 2 is installed, this module uses Flash Attention to improve throughput.
    If Flash Attention 2 is not installed, the implementation will use PyTorch's SDPA kernel,
    which requires padding and unpadding inputs, adding some overhead.

    See `forward` method for additional details.
    """

    def __init__(self, config: ModernBertConfig, layer_id: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_id = layer_id

        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads ({config.num_attention_heads})"
            )

        self.attention_dropout = config.attention_dropout
        self.deterministic_flash_attn = config.deterministic_flash_attn
        self.num_heads = config.num_attention_heads
        self.head_dim = config.hidden_size // config.num_attention_heads
        self.all_head_size = self.head_dim * self.num_heads
        self.Wqkv = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=config.attention_bias)

        if layer_id % config.global_attn_every_n_layers != 0:
            self.local_attention = (config.local_attention // 2, config.local_attention // 2)
        else:
            self.local_attention = (-1, -1)

        rope_theta = config.global_rope_theta
        max_position_embeddings = config.max_position_embeddings
        if self.local_attention != (-1, -1):
            if config.local_rope_theta is not None:
                rope_theta = config.local_rope_theta
            max_position_embeddings = config.local_attention

        if config._attn_implementation == "flash_attention_2":
            self.rotary_emb = ModernBertUnpaddedRotaryEmbedding(
                dim=self.head_dim, max_seqlen=max_position_embeddings, base=rope_theta
            )
        else:
            self.rotary_emb = ModernBertRotaryEmbedding(
                dim=self.head_dim, max_position_embeddings=max_position_embeddings, base=rope_theta
            )

        self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
        self.out_drop = nn.Dropout(config.attention_dropout) if config.attention_dropout > 0.0 else nn.Identity()
        self.pruned_heads = set()

    def forward(
        self,
        hidden_states: torch.Tensor,
        output_attentions: Optional[bool] = False,
        **kwargs,
    ) -> torch.Tensor:
        qkv = self.Wqkv(hidden_states)

        bs = hidden_states.shape[0]
        if self.config._attn_implementation == "flash_attention_2":
            qkv = qkv.view(-1, 3, self.num_heads, self.head_dim)
        else:
            qkv = qkv.view(bs, -1, 3, self.num_heads, self.head_dim)

        attn_outputs = MODERNBERT_ATTENTION_FUNCTION[self.config._attn_implementation](
            self,
            qkv=qkv,
            rotary_emb=self.rotary_emb,
            local_attention=self.local_attention,
            bs=bs,
            dim=self.all_head_size,
            output_attentions=output_attentions,
            **kwargs,
        )
        hidden_states = attn_outputs[0]
        hidden_states = self.out_drop(self.Wo(hidden_states))

        return (hidden_states,) + attn_outputs[1:]  # add attentions if outputted


class ModernBertEncoderLayer(nn.Module):
    def __init__(self, config: ModernBertConfig, layer_id: Optional[int] = None):
        super().__init__()
        self.config = config
        if layer_id == 0:
            self.attn_norm = nn.Identity()
        else:
            self.attn_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
        self.attn = ModernBertAttention(config=config, layer_id=layer_id)
        self.mlp_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
        self.mlp = ModernBertMLP(config)

    @torch.compile(dynamic=True)
    def compiled_mlp(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return self.mlp(self.mlp_norm(hidden_states))

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        sliding_window_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seqlen: Optional[int] = None,
        output_attentions: Optional[bool] = False,
    ) -> torch.Tensor:
        attn_outputs = self.attn(
            self.attn_norm(hidden_states),
            attention_mask=attention_mask,
            sliding_window_mask=sliding_window_mask,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            output_attentions=output_attentions,
        )
        hidden_states = hidden_states + attn_outputs[0]
        mlp_output = (
            self.compiled_mlp(hidden_states)
            if self.config.reference_compile
            else self.mlp(self.mlp_norm(hidden_states))
        )
        hidden_states = hidden_states + mlp_output

        return (hidden_states,) + attn_outputs[1:]  # add attentions if outputted


MODERNBERT_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`ModernBertConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare ModernBert Model outputting raw hidden-states without any specific head on top.",
    MODERNBERT_START_DOCSTRING,
)
class ModernBertPreTrainedModel(PreTrainedModel):
    config_class = ModernBertConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["ModernBertEmbeddings", "ModernBertEncoderLayer"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_flex_attn = False

    def _init_weights(self, module: nn.Module):
        cutoff_factor = self.config.initializer_cutoff_factor
        if cutoff_factor is None:
            cutoff_factor = 3

        def init_weight(module: nn.Module, std: float):
            nn.init.trunc_normal_(
                module.weight,
                mean=0.0,
                std=std,
                a=-cutoff_factor * std,
                b=cutoff_factor * std,
            )

            if isinstance(module, nn.Linear):
                if module.bias is not None:
                    nn.init.zeros_(module.bias)

        stds = {
            "in": self.config.initializer_range,
            "out": self.config.initializer_range / math.sqrt(2.0 * self.config.num_hidden_layers),
            "embedding": self.config.initializer_range,
            "final_out": self.config.hidden_size**-0.5,
        }

        if isinstance(module, ModernBertEmbeddings):
            init_weight(module.tok_embeddings, stds["embedding"])
        elif isinstance(module, ModernBertMLP):
            init_weight(module.Wi, stds["in"])
            init_weight(module.Wo, stds["out"])
        elif isinstance(module, ModernBertAttention):
            init_weight(module.Wqkv, stds["in"])
            init_weight(module.Wo, stds["out"])
        elif isinstance(module, ModernBertPredictionHead):
            init_weight(module.dense, stds["out"])
        elif isinstance(module, ModernBertForMaskedLM):
            init_weight(module.decoder, stds["out"])
        elif isinstance(module, (ModernBertForSequenceClassification, ModernBertForTokenClassification)):
            init_weight(module.classifier, stds["final_out"])

    @classmethod
    def _autoset_attn_implementation(
        cls,
        config,
        use_flash_attention_2: bool = False,
        torch_dtype: Optional[torch.dtype] = None,
        device_map: Optional[Union[str, Dict[str, int]]] = None,
        check_device_map: bool = True,
    ):
        # If the user didn't specify anything, try to use flash_attention_2 if available.
        # Otherwise we fall back to the default SDPA -> Eager from the super() method.
        if config._attn_implementation_internal is None:
            config._attn_implementation_internal = "flash_attention_2"
            try:
                return cls._check_and_enable_flash_attn_2(
                    config,
                    torch_dtype=torch_dtype,
                    device_map=device_map,
                    hard_check_only=False,
                    check_device_map=check_device_map,
                )
            except (ValueError, ImportError):
                config._attn_implementation_internal = None
        return super()._autoset_attn_implementation(
            config,
            use_flash_attention_2=use_flash_attention_2,
            torch_dtype=torch_dtype,
            device_map=device_map,
            check_device_map=check_device_map,
        )

    def _maybe_set_compile(self):
        if self.config.reference_compile is False:
            return

        if hasattr(self, "hf_device_map") and len(self.hf_device_map) > 1:
            if self.config.reference_compile:
                logger.warning_once(
                    "If `accelerate` split the model across devices, `torch.compile` will not work. "
                    "Falling back to non-compiled mode."
                )
            self.config.reference_compile = False

        if self.device.type == "mps":
            if self.config.reference_compile:
                logger.warning_once(
                    "Compiling the model with `torch.compile` and using a `torch.mps` device is not supported. "
                    "Falling back to non-compiled mode."
                )
            self.config.reference_compile = False

        if self.config.reference_compile is None:
            self.config.reference_compile = is_triton_available()

    def resize_token_embeddings(self, *args, **kwargs):
        model_embeds = super().resize_token_embeddings(*args, **kwargs)

        if self.config.reference_compile in {True, None}:
            if self.config.reference_compile:
                logger.warning_once(
                    "Resizing token embeddings with `torch.compile` is not supported. Falling back to non-compiled mode."
                )
            self.config.reference_compile = False

        return model_embeds


def _unpad_modernbert_input(
    inputs: torch.Tensor,
    attention_mask: torch.Tensor,
    position_ids: Optional[torch.Tensor] = None,
    labels: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, Optional[torch.Tensor], Optional[torch.Tensor]]:
    """
    Remove padding from input sequences.

    Args:
        inputs: (batch, seqlen, ...) or (batch, seqlen)
        attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
        position_ids: (batch, seqlen), int, position ids
        labels: (batch, seqlen), int, labels

    Returns:
        unpadded_inputs: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask.
        indices: (total_nnz)
        cu_seqlens: (batch + 1), the cumulative sequence lengths
        max_seqlen_in_batch: int
        unpadded_position_ids: (total_nnz) or None
        unpadded_labels: (total_nnz) or None
    """
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = int(seqlens_in_batch.max().item())
    cu_seqlens = torch.nn.functional.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))

    if inputs.dim() == 2:
        unpadded_inputs = inputs.flatten()[indices]
    else:
        batch, seqlen, *rest = inputs.shape
        shape = batch * seqlen
        unpadded_inputs = inputs.view(shape, *rest)[indices]

    unpadded_position_ids = position_ids.flatten()[indices] if position_ids is not None else None
    unpadded_labels = labels.flatten()[indices] if labels is not None else None

    return unpadded_inputs, indices, cu_seqlens, max_seqlen_in_batch, unpadded_position_ids, unpadded_labels


def _pad_modernbert_output(
    inputs: torch.Tensor,
    indices: torch.Tensor,
    batch: int,
    seqlen: int,
) -> torch.Tensor:
    """
    Add padding to sequences.

    Args:
        inputs: (total_nnz, ...) or (total_nnz,), where total_nnz = number of tokens selected in attention_mask.
        indices: (total_nnz)
        batch: int, batch size
        seqlen: int, max sequence length

    Returns:
        padded_inputs: (batch, seqlen, ...) or (batch, seqlen)
    """
    if inputs.dim() == 1:
        output = torch.zeros(batch * seqlen, dtype=inputs.dtype, device=inputs.device)
        output[indices] = inputs
        padded_inputs = output.view(batch, seqlen)
    else:
        _, *rest = inputs.shape
        output = torch.zeros(batch * seqlen, *rest, dtype=inputs.dtype, device=inputs.device)
        output[indices] = inputs
        padded_inputs = output.view(batch, seqlen, *rest)

    return padded_inputs


MODERNBERT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
            perform global attention, while the rest perform local attention. This mask is used to avoid attending to
            far-away tokens in the local attention layers.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
            Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
        cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
            Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
        max_seqlen (`int`, *optional*):
            Maximum sequence length in the batch. Used to pad the output tensors.
        batch_size (`int`, *optional*):
            Batch size of the input sequences. Used to pad the output tensors.
        seq_len (`int`, *optional*):
            Sequence length of the input sequences. Used to pad the output tensors.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare ModernBert Model outputting raw hidden-states without any specific head on top.",
    MODERNBERT_START_DOCSTRING,
)
class ModernBertModel(ModernBertPreTrainedModel):
    def __init__(self, config: ModernBertConfig):
        super().__init__(config)
        self.config = config
        self.embeddings = ModernBertEmbeddings(config)
        self.layers = nn.ModuleList(
            [ModernBertEncoderLayer(config, layer_id) for layer_id in range(config.num_hidden_layers)]
        )
        self.final_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
        self.gradient_checkpointing = False
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.tok_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.tok_embeddings = value

    @add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        sliding_window_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        indices: Optional[torch.Tensor] = None,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seqlen: Optional[int] = None,
        batch_size: Optional[int] = None,
        seq_len: Optional[int] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        self._maybe_set_compile()
        self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)

        if batch_size is None and seq_len is None:
            batch_size, seq_len = input_ids.shape[:2]

        if attention_mask is None:
            attention_mask = torch.ones((batch_size, seq_len), device=input_ids.device, dtype=torch.bool)

        repad = False
        if self.config._attn_implementation == "flash_attention_2":
            if indices is None and cu_seqlens is None and max_seqlen is None:
                repad = True
                with torch.no_grad():
                    input_ids, indices, cu_seqlens, max_seqlen, *_ = _unpad_modernbert_input(
                        inputs=input_ids, attention_mask=attention_mask
                    )
        else:
            if position_ids is None:
                position_ids = torch.arange(seq_len, device=input_ids.device).unsqueeze(0)

            attention_mask, sliding_window_mask = self._update_attention_mask(
                attention_mask, output_attentions=output_attentions
            )

        hidden_states = self.embeddings(input_ids)

        for encoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    encoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    sliding_window_mask,
                    position_ids,
                    cu_seqlens,
                    max_seqlen,
                    output_attentions,
                )
            else:
                layer_outputs = encoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    sliding_window_mask=sliding_window_mask,
                    position_ids=position_ids,
                    cu_seqlens=cu_seqlens,
                    max_seqlen=max_seqlen,
                    output_attentions=output_attentions,
                )
            hidden_states = layer_outputs[0]
            if output_attentions and len(layer_outputs) > 1:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        hidden_states = self.final_norm(hidden_states)

        if repad:
            hidden_states = _pad_modernbert_output(
                inputs=hidden_states, indices=indices, batch=batch_size, seqlen=seq_len
            )
            if all_hidden_states is not None:
                all_hidden_states = tuple(
                    _pad_modernbert_output(inputs=hs, indices=indices, batch=batch_size, seqlen=seq_len)
                    for hs in all_hidden_states
                )

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )

    def _update_attention_mask(self, attention_mask: torch.Tensor, output_attentions: bool) -> torch.Tensor:
        if output_attentions:
            if self.config._attn_implementation == "sdpa":
                logger.warning_once(
                    "Outputting attentions is only supported with the 'eager' attention implementation, "
                    'not with "sdpa". Falling back to `attn_implementation="eager"`.'
                )
                self.config._attn_implementation = "eager"
            elif self.config._attn_implementation != "eager":
                logger.warning_once(
                    "Outputting attentions is only supported with the eager attention implementation, "
                    f'not with {self.config._attn_implementation}. Consider setting `attn_implementation="eager"`.'
                    " Setting `output_attentions=False`."
                )

        global_attention_mask = _prepare_4d_attention_mask(attention_mask, self.dtype)

        # Create position indices
        rows = torch.arange(global_attention_mask.shape[2]).unsqueeze(0)
        # Calculate distance between positions
        distance = torch.abs(rows - rows.T)

        # Create sliding window mask (1 for positions within window, 0 outside)
        window_mask = (
            (distance <= self.config.local_attention // 2).unsqueeze(0).unsqueeze(0).to(attention_mask.device)
        )
        # Combine with existing mask
        sliding_window_mask = global_attention_mask.masked_fill(window_mask.logical_not(), torch.finfo(self.dtype).min)

        return global_attention_mask, sliding_window_mask


class ModernBertPredictionHead(nn.Module):
    def __init__(self, config: ModernBertConfig):
        super().__init__()
        self.config = config
        self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.classifier_bias)
        self.act = ACT2FN[config.classifier_activation]
        self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return self.norm(self.act(self.dense(hidden_states)))


@add_start_docstrings(
    "The ModernBert Model with a decoder head on top that is used for masked language modeling.",
    MODERNBERT_START_DOCSTRING,
)
class ModernBertForMaskedLM(ModernBertPreTrainedModel):
    _tied_weights_keys = ["decoder.weight"]

    def __init__(self, config: ModernBertConfig):
        super().__init__(config)
        self.config = config
        self.model = ModernBertModel(config)
        self.head = ModernBertPredictionHead(config)
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=config.decoder_bias)

        self.sparse_prediction = self.config.sparse_prediction
        self.sparse_pred_ignore_index = self.config.sparse_pred_ignore_index

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.decoder

    def set_output_embeddings(self, new_embeddings: nn.Linear):
        self.decoder = new_embeddings

    @torch.compile(dynamic=True)
    def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
        return self.decoder(self.head(output))

    @add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=MaskedLMOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        sliding_window_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        indices: Optional[torch.Tensor] = None,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seqlen: Optional[int] = None,
        batch_size: Optional[int] = None,
        seq_len: Optional[int] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        self._maybe_set_compile()

        if self.config._attn_implementation == "flash_attention_2":
            if indices is None and cu_seqlens is None and max_seqlen is None:
                batch_size, seq_len = input_ids.shape[:2]
                if attention_mask is None:
                    attention_mask = torch.ones((batch_size, seq_len), device=input_ids.device, dtype=torch.bool)
                with torch.no_grad():
                    input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
                        inputs=input_ids, attention_mask=attention_mask, position_ids=position_ids, labels=labels
                    )

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            sliding_window_mask=sliding_window_mask,
            position_ids=position_ids,
            indices=indices,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            batch_size=batch_size,
            seq_len=seq_len,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        last_hidden_state = outputs[0]

        if self.sparse_prediction and labels is not None:
            # flatten labels and output first
            labels = labels.view(-1)
            last_hidden_state = last_hidden_state.view(labels.shape[0], -1)

            # then filter out the non-masked tokens
            mask_tokens = labels != self.sparse_pred_ignore_index
            last_hidden_state = last_hidden_state[mask_tokens]
            labels = labels[mask_tokens]

        logits = (
            self.compiled_head(last_hidden_state)
            if self.config.reference_compile
            else self.decoder(self.head(last_hidden_state))
        )

        loss = None
        if labels is not None:
            loss = self.loss_function(logits, labels, vocab_size=self.config.vocab_size)

        if self.config._attn_implementation == "flash_attention_2":
            with torch.no_grad():
                logits = _pad_modernbert_output(inputs=logits, indices=indices, batch=batch_size, seqlen=seq_len)
        if not return_dict:
            output = (logits,)
            return ((loss,) + output) if loss is not None else output

        return MaskedLMOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    "The ModernBert Model with a sequence classification head on top that performs pooling.",
    MODERNBERT_START_DOCSTRING,
)
class ModernBertForSequenceClassification(ModernBertPreTrainedModel):
    def __init__(self, config: ModernBertConfig):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.model = ModernBertModel(config)
        self.head = ModernBertPredictionHead(config)
        self.drop = torch.nn.Dropout(config.classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        sliding_window_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        indices: Optional[torch.Tensor] = None,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seqlen: Optional[int] = None,
        batch_size: Optional[int] = None,
        seq_len: Optional[int] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        self._maybe_set_compile()

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            sliding_window_mask=sliding_window_mask,
            position_ids=position_ids,
            indices=indices,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            batch_size=batch_size,
            seq_len=seq_len,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        last_hidden_state = outputs[0]

        if self.config.classifier_pooling == "cls":
            last_hidden_state = last_hidden_state[:, 0]
        elif self.config.classifier_pooling == "mean":
            last_hidden_state = (last_hidden_state * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(
                dim=1, keepdim=True
            )

        pooled_output = self.head(last_hidden_state)
        pooled_output = self.drop(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,)
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    "The ModernBert Model with a token classification head on top, e.g. for Named Entity Recognition (NER) tasks.",
    MODERNBERT_START_DOCSTRING,
)
class ModernBertForTokenClassification(ModernBertPreTrainedModel):
    def __init__(self, config: ModernBertConfig):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.model = ModernBertModel(config)
        self.head = ModernBertPredictionHead(config)
        self.drop = torch.nn.Dropout(config.classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        sliding_window_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        indices: Optional[torch.Tensor] = None,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seqlen: Optional[int] = None,
        batch_size: Optional[int] = None,
        seq_len: Optional[int] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        self._maybe_set_compile()

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            sliding_window_mask=sliding_window_mask,
            position_ids=position_ids,
            indices=indices,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            batch_size=batch_size,
            seq_len=seq_len,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        last_hidden_state = outputs[0]

        last_hidden_state = self.head(last_hidden_state)
        last_hidden_state = self.drop(last_hidden_state)
        logits = self.classifier(last_hidden_state)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


__all__ = [
    "ModernBertModel",
    "ModernBertPreTrainedModel",
    "ModernBertForMaskedLM",
    "ModernBertForSequenceClassification",
    "ModernBertForTokenClassification",
]