KoichiYasuoka
commited on
Commit
·
e2708f6
1
Parent(s):
324dfb8
initial release
Browse files- README.md +93 -0
- config.json +33 -0
- deprel/config.json +170 -0
- deprel/pytorch_model.bin +3 -0
- deprel/special_tokens_map.json +1 -0
- deprel/tokenizer_config.json +1 -0
- deprel/vocab.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tagger/config.json +174 -0
- tagger/pytorch_model.bin +3 -0
- tagger/special_tokens_map.json +1 -0
- tagger/tokenizer_config.json +1 -0
- tagger/vocab.txt +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "lzh"
|
4 |
+
tags:
|
5 |
+
- "classical chinese"
|
6 |
+
- "literary chinese"
|
7 |
+
- "ancient chinese"
|
8 |
+
- "question-answering"
|
9 |
+
- "dependency-parsing"
|
10 |
+
datasets:
|
11 |
+
- "universal_dependencies"
|
12 |
+
license: "apache-2.0"
|
13 |
+
pipeline_tag: "question-answering"
|
14 |
+
widget:
|
15 |
+
- text: "穴"
|
16 |
+
context: "不入虎穴不得虎子"
|
17 |
+
- text: "子"
|
18 |
+
context: "不入虎穴不得虎子"
|
19 |
+
- text: "不"
|
20 |
+
context: "[MASK]入虎穴不得虎子"
|
21 |
+
---
|
22 |
+
|
23 |
+
# bert-ancient-chinese-base-ud-head
|
24 |
+
|
25 |
+
## Model Description
|
26 |
+
|
27 |
+
This is a BERT model pre-trained on Classical Chinese texts for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [bert-ancient-chinese](https://huggingface.co/Jihuai/bert-ancient-chinese) and [UD_Classical_Chinese-Kyoto](https://github.com/UniversalDependencies/UD_Classical_Chinese-Kyoto). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`.
|
28 |
+
|
29 |
+
## How to Use
|
30 |
+
|
31 |
+
```py
|
32 |
+
from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline
|
33 |
+
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-ancient-chinese-base-ud-head")
|
34 |
+
model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/bert-ancient-chinese-base-ud-head")
|
35 |
+
qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model)
|
36 |
+
print(qap(question="穴",context="不入虎穴不得虎子"))
|
37 |
+
```
|
38 |
+
|
39 |
+
or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/))
|
40 |
+
|
41 |
+
```py
|
42 |
+
class TransformersUD(object):
|
43 |
+
def __init__(self,bert):
|
44 |
+
import os
|
45 |
+
from transformers import (AutoTokenizer,AutoModelForQuestionAnswering,
|
46 |
+
AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline)
|
47 |
+
self.tokenizer=AutoTokenizer.from_pretrained(bert)
|
48 |
+
self.model=AutoModelForQuestionAnswering.from_pretrained(bert)
|
49 |
+
x=AutoModelForTokenClassification.from_pretrained
|
50 |
+
if os.path.isdir(bert):
|
51 |
+
d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger"))
|
52 |
+
else:
|
53 |
+
from transformers.file_utils import hf_bucket_url
|
54 |
+
c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json"))
|
55 |
+
d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c)
|
56 |
+
s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json"))
|
57 |
+
t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s)
|
58 |
+
self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer,
|
59 |
+
aggregation_strategy="simple")
|
60 |
+
self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer)
|
61 |
+
def __call__(self,text):
|
62 |
+
import numpy,torch,ufal.chu_liu_edmonds
|
63 |
+
w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)]
|
64 |
+
z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w)
|
65 |
+
r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan)
|
66 |
+
v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[]
|
67 |
+
for i,t in enumerate(v):
|
68 |
+
q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id]
|
69 |
+
c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]])
|
70 |
+
b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c]
|
71 |
+
d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]),
|
72 |
+
token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b]))
|
73 |
+
s,e=d.start_logits.tolist(),d.end_logits.tolist()
|
74 |
+
for i in range(n):
|
75 |
+
for j in range(n):
|
76 |
+
m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1]
|
77 |
+
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
|
78 |
+
if [0 for i in h if i==0]!=[0]:
|
79 |
+
i=([p for s,e,p in w]+["root"]).index("root")
|
80 |
+
j=i+1 if i<n else numpy.nanargmax(m[:,0])
|
81 |
+
m[0:j,0]=m[j+1:,0]=numpy.nan
|
82 |
+
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
|
83 |
+
u="# text = "+text.replace("\n"," ")+"\n"
|
84 |
+
for i,(s,e,p) in enumerate(w,1):
|
85 |
+
p="root" if h[i]==0 else "dep" if p=="root" else p
|
86 |
+
u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]),
|
87 |
+
str(h[i]),p,"_","_" if i<n and w[i][0]<e else "SpaceAfter=No"])+"\n"
|
88 |
+
return u+"\n"
|
89 |
+
|
90 |
+
nlp=TransformersUD("KoichiYasuoka/bert-ancient-chinese-base-ud-head")
|
91 |
+
print(nlp("不入虎穴不得虎子"))
|
92 |
+
```
|
93 |
+
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForQuestionAnswering"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"directionality": "bidi",
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"lstm_dropout_prob": 0.5,
|
15 |
+
"lstm_embedding_size": 768,
|
16 |
+
"max_position_embeddings": 512,
|
17 |
+
"model_type": "bert",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"pooler_fc_size": 768,
|
22 |
+
"pooler_num_attention_heads": 12,
|
23 |
+
"pooler_num_fc_layers": 3,
|
24 |
+
"pooler_size_per_head": 128,
|
25 |
+
"pooler_type": "first_token_transform",
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"tokenizer_class": "BertTokenizer",
|
28 |
+
"torch_dtype": "float32",
|
29 |
+
"transformers_version": "4.19.4",
|
30 |
+
"type_vocab_size": 2,
|
31 |
+
"use_cache": true,
|
32 |
+
"vocab_size": 38208
|
33 |
+
}
|
deprel/config.json
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForTokenClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"directionality": "bidi",
|
8 |
+
"finetuning_task": "pos",
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "B-acl",
|
14 |
+
"1": "B-advcl",
|
15 |
+
"2": "B-advmod",
|
16 |
+
"3": "B-amod",
|
17 |
+
"4": "B-aux",
|
18 |
+
"5": "B-case",
|
19 |
+
"6": "B-cc",
|
20 |
+
"7": "B-ccomp",
|
21 |
+
"8": "B-clf",
|
22 |
+
"9": "B-compound",
|
23 |
+
"10": "B-compound:redup",
|
24 |
+
"11": "B-conj",
|
25 |
+
"12": "B-cop",
|
26 |
+
"13": "B-csubj",
|
27 |
+
"14": "B-csubj:pass",
|
28 |
+
"15": "B-det",
|
29 |
+
"16": "B-discourse",
|
30 |
+
"17": "B-discourse:sp",
|
31 |
+
"18": "B-dislocated",
|
32 |
+
"19": "B-expl",
|
33 |
+
"20": "B-fixed",
|
34 |
+
"21": "B-flat",
|
35 |
+
"22": "B-flat:foreign",
|
36 |
+
"23": "B-flat:vv",
|
37 |
+
"24": "B-iobj",
|
38 |
+
"25": "B-list",
|
39 |
+
"26": "B-mark",
|
40 |
+
"27": "B-nmod",
|
41 |
+
"28": "B-nsubj",
|
42 |
+
"29": "B-nsubj:pass",
|
43 |
+
"30": "B-nummod",
|
44 |
+
"31": "B-obj",
|
45 |
+
"32": "B-obl",
|
46 |
+
"33": "B-obl:lmod",
|
47 |
+
"34": "B-obl:tmod",
|
48 |
+
"35": "B-orphan",
|
49 |
+
"36": "B-parataxis",
|
50 |
+
"37": "B-root",
|
51 |
+
"38": "B-vocative",
|
52 |
+
"39": "B-xcomp",
|
53 |
+
"40": "I-acl",
|
54 |
+
"41": "I-advcl",
|
55 |
+
"42": "I-advmod",
|
56 |
+
"43": "I-amod",
|
57 |
+
"44": "I-ccomp",
|
58 |
+
"45": "I-clf",
|
59 |
+
"46": "I-compound",
|
60 |
+
"47": "I-conj",
|
61 |
+
"48": "I-csubj",
|
62 |
+
"49": "I-dislocated",
|
63 |
+
"50": "I-flat",
|
64 |
+
"51": "I-flat:foreign",
|
65 |
+
"52": "I-iobj",
|
66 |
+
"53": "I-list",
|
67 |
+
"54": "I-nmod",
|
68 |
+
"55": "I-nsubj",
|
69 |
+
"56": "I-nsubj:pass",
|
70 |
+
"57": "I-nummod",
|
71 |
+
"58": "I-obj",
|
72 |
+
"59": "I-obl",
|
73 |
+
"60": "I-obl:lmod",
|
74 |
+
"61": "I-obl:tmod",
|
75 |
+
"62": "I-parataxis",
|
76 |
+
"63": "I-root",
|
77 |
+
"64": "I-vocative",
|
78 |
+
"65": "I-xcomp"
|
79 |
+
},
|
80 |
+
"initializer_range": 0.02,
|
81 |
+
"intermediate_size": 3072,
|
82 |
+
"label2id": {
|
83 |
+
"B-acl": 0,
|
84 |
+
"B-advcl": 1,
|
85 |
+
"B-advmod": 2,
|
86 |
+
"B-amod": 3,
|
87 |
+
"B-aux": 4,
|
88 |
+
"B-case": 5,
|
89 |
+
"B-cc": 6,
|
90 |
+
"B-ccomp": 7,
|
91 |
+
"B-clf": 8,
|
92 |
+
"B-compound": 9,
|
93 |
+
"B-compound:redup": 10,
|
94 |
+
"B-conj": 11,
|
95 |
+
"B-cop": 12,
|
96 |
+
"B-csubj": 13,
|
97 |
+
"B-csubj:pass": 14,
|
98 |
+
"B-det": 15,
|
99 |
+
"B-discourse": 16,
|
100 |
+
"B-discourse:sp": 17,
|
101 |
+
"B-dislocated": 18,
|
102 |
+
"B-expl": 19,
|
103 |
+
"B-fixed": 20,
|
104 |
+
"B-flat": 21,
|
105 |
+
"B-flat:foreign": 22,
|
106 |
+
"B-flat:vv": 23,
|
107 |
+
"B-iobj": 24,
|
108 |
+
"B-list": 25,
|
109 |
+
"B-mark": 26,
|
110 |
+
"B-nmod": 27,
|
111 |
+
"B-nsubj": 28,
|
112 |
+
"B-nsubj:pass": 29,
|
113 |
+
"B-nummod": 30,
|
114 |
+
"B-obj": 31,
|
115 |
+
"B-obl": 32,
|
116 |
+
"B-obl:lmod": 33,
|
117 |
+
"B-obl:tmod": 34,
|
118 |
+
"B-orphan": 35,
|
119 |
+
"B-parataxis": 36,
|
120 |
+
"B-root": 37,
|
121 |
+
"B-vocative": 38,
|
122 |
+
"B-xcomp": 39,
|
123 |
+
"I-acl": 40,
|
124 |
+
"I-advcl": 41,
|
125 |
+
"I-advmod": 42,
|
126 |
+
"I-amod": 43,
|
127 |
+
"I-ccomp": 44,
|
128 |
+
"I-clf": 45,
|
129 |
+
"I-compound": 46,
|
130 |
+
"I-conj": 47,
|
131 |
+
"I-csubj": 48,
|
132 |
+
"I-dislocated": 49,
|
133 |
+
"I-flat": 50,
|
134 |
+
"I-flat:foreign": 51,
|
135 |
+
"I-iobj": 52,
|
136 |
+
"I-list": 53,
|
137 |
+
"I-nmod": 54,
|
138 |
+
"I-nsubj": 55,
|
139 |
+
"I-nsubj:pass": 56,
|
140 |
+
"I-nummod": 57,
|
141 |
+
"I-obj": 58,
|
142 |
+
"I-obl": 59,
|
143 |
+
"I-obl:lmod": 60,
|
144 |
+
"I-obl:tmod": 61,
|
145 |
+
"I-parataxis": 62,
|
146 |
+
"I-root": 63,
|
147 |
+
"I-vocative": 64,
|
148 |
+
"I-xcomp": 65
|
149 |
+
},
|
150 |
+
"layer_norm_eps": 1e-12,
|
151 |
+
"lstm_dropout_prob": 0.5,
|
152 |
+
"lstm_embedding_size": 768,
|
153 |
+
"max_position_embeddings": 512,
|
154 |
+
"model_type": "bert",
|
155 |
+
"num_attention_heads": 12,
|
156 |
+
"num_hidden_layers": 12,
|
157 |
+
"pad_token_id": 0,
|
158 |
+
"pooler_fc_size": 768,
|
159 |
+
"pooler_num_attention_heads": 12,
|
160 |
+
"pooler_num_fc_layers": 3,
|
161 |
+
"pooler_size_per_head": 128,
|
162 |
+
"pooler_type": "first_token_transform",
|
163 |
+
"position_embedding_type": "absolute",
|
164 |
+
"tokenizer_class": "BertTokenizer",
|
165 |
+
"torch_dtype": "float32",
|
166 |
+
"transformers_version": "4.19.4",
|
167 |
+
"type_vocab_size": 2,
|
168 |
+
"use_cache": true,
|
169 |
+
"vocab_size": 38208
|
170 |
+
}
|
deprel/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69e2b53116cbea8d40e7d0d33c23e21e7fa7954d8abc0eef70174acbf8afefee
|
3 |
+
size 459454608
|
deprel/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
deprel/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "do_basic_tokenize": true, "never_split": null, "special_tokens_map_file": null, "tokenizer_class": "BertTokenizer"}
|
deprel/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:467e6868c713cca9f8de470c77e86349ee08a6c58eca584d1ccea735ee15fb07
|
3 |
+
size 459254577
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tagger/config.json
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForTokenClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"directionality": "bidi",
|
8 |
+
"finetuning_task": "pos",
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "B-ADP|Degree=Equ",
|
14 |
+
"1": "B-ADP|_",
|
15 |
+
"2": "B-ADV|AdvType=Cau",
|
16 |
+
"3": "B-ADV|AdvType=Deg|Degree=Cmp",
|
17 |
+
"4": "B-ADV|AdvType=Deg|Degree=Pos",
|
18 |
+
"5": "B-ADV|AdvType=Deg|Degree=Sup",
|
19 |
+
"6": "B-ADV|AdvType=Tim",
|
20 |
+
"7": "B-ADV|AdvType=Tim|Aspect=Perf",
|
21 |
+
"8": "B-ADV|AdvType=Tim|Tense=Fut",
|
22 |
+
"9": "B-ADV|AdvType=Tim|Tense=Past",
|
23 |
+
"10": "B-ADV|AdvType=Tim|Tense=Pres",
|
24 |
+
"11": "B-ADV|Degree=Equ|VerbForm=Conv",
|
25 |
+
"12": "B-ADV|Degree=Pos|VerbForm=Conv",
|
26 |
+
"13": "B-ADV|Polarity=Neg",
|
27 |
+
"14": "B-ADV|Polarity=Neg|VerbForm=Conv",
|
28 |
+
"15": "B-ADV|VerbForm=Conv",
|
29 |
+
"16": "B-ADV|_",
|
30 |
+
"17": "B-AUX|Mood=Des",
|
31 |
+
"18": "B-AUX|Mood=Nec",
|
32 |
+
"19": "B-AUX|Mood=Pot",
|
33 |
+
"20": "B-AUX|VerbType=Cop",
|
34 |
+
"21": "B-AUX|Voice=Pass",
|
35 |
+
"22": "B-CCONJ|_",
|
36 |
+
"23": "B-INTJ|_",
|
37 |
+
"24": "B-NOUN|Case=Loc",
|
38 |
+
"25": "B-NOUN|Case=Tem",
|
39 |
+
"26": "B-NOUN|NounType=Clf",
|
40 |
+
"27": "B-NOUN|_",
|
41 |
+
"28": "B-NUM|NumType=Ord",
|
42 |
+
"29": "B-NUM|_",
|
43 |
+
"30": "B-PART|_",
|
44 |
+
"31": "B-PRON|Person=1|PronType=Prs",
|
45 |
+
"32": "B-PRON|Person=2|PronType=Prs",
|
46 |
+
"33": "B-PRON|Person=3|PronType=Prs",
|
47 |
+
"34": "B-PRON|PronType=Dem",
|
48 |
+
"35": "B-PRON|PronType=Int",
|
49 |
+
"36": "B-PRON|PronType=Prs",
|
50 |
+
"37": "B-PRON|PronType=Prs|Reflex=Yes",
|
51 |
+
"38": "B-PROPN|Case=Loc|NameType=Geo",
|
52 |
+
"39": "B-PROPN|Case=Loc|NameType=Nat",
|
53 |
+
"40": "B-PROPN|NameType=Giv",
|
54 |
+
"41": "B-PROPN|NameType=Prs",
|
55 |
+
"42": "B-PROPN|NameType=Sur",
|
56 |
+
"43": "B-SCONJ|_",
|
57 |
+
"44": "B-SYM|_",
|
58 |
+
"45": "B-VERB|Degree=Equ",
|
59 |
+
"46": "B-VERB|Degree=Equ|VerbForm=Part",
|
60 |
+
"47": "B-VERB|Degree=Pos",
|
61 |
+
"48": "B-VERB|Degree=Pos|VerbForm=Part",
|
62 |
+
"49": "B-VERB|Polarity=Neg",
|
63 |
+
"50": "B-VERB|Polarity=Neg|VerbForm=Part",
|
64 |
+
"51": "B-VERB|VerbForm=Part",
|
65 |
+
"52": "B-VERB|_",
|
66 |
+
"53": "I-ADV|VerbForm=Conv",
|
67 |
+
"54": "I-NOUN|Case=Loc",
|
68 |
+
"55": "I-NOUN|Case=Tem",
|
69 |
+
"56": "I-NOUN|_",
|
70 |
+
"57": "I-NUM|NumType=Ord",
|
71 |
+
"58": "I-NUM|_",
|
72 |
+
"59": "I-PROPN|Case=Loc|NameType=Geo",
|
73 |
+
"60": "I-PROPN|Case=Loc|NameType=Nat",
|
74 |
+
"61": "I-PROPN|NameType=Giv",
|
75 |
+
"62": "I-PROPN|NameType=Prs",
|
76 |
+
"63": "I-PROPN|NameType=Sur",
|
77 |
+
"64": "I-VERB|Degree=Equ",
|
78 |
+
"65": "I-VERB|Degree=Pos",
|
79 |
+
"66": "I-VERB|VerbForm=Part",
|
80 |
+
"67": "I-VERB|_"
|
81 |
+
},
|
82 |
+
"initializer_range": 0.02,
|
83 |
+
"intermediate_size": 3072,
|
84 |
+
"label2id": {
|
85 |
+
"B-ADP|Degree=Equ": 0,
|
86 |
+
"B-ADP|_": 1,
|
87 |
+
"B-ADV|AdvType=Cau": 2,
|
88 |
+
"B-ADV|AdvType=Deg|Degree=Cmp": 3,
|
89 |
+
"B-ADV|AdvType=Deg|Degree=Pos": 4,
|
90 |
+
"B-ADV|AdvType=Deg|Degree=Sup": 5,
|
91 |
+
"B-ADV|AdvType=Tim": 6,
|
92 |
+
"B-ADV|AdvType=Tim|Aspect=Perf": 7,
|
93 |
+
"B-ADV|AdvType=Tim|Tense=Fut": 8,
|
94 |
+
"B-ADV|AdvType=Tim|Tense=Past": 9,
|
95 |
+
"B-ADV|AdvType=Tim|Tense=Pres": 10,
|
96 |
+
"B-ADV|Degree=Equ|VerbForm=Conv": 11,
|
97 |
+
"B-ADV|Degree=Pos|VerbForm=Conv": 12,
|
98 |
+
"B-ADV|Polarity=Neg": 13,
|
99 |
+
"B-ADV|Polarity=Neg|VerbForm=Conv": 14,
|
100 |
+
"B-ADV|VerbForm=Conv": 15,
|
101 |
+
"B-ADV|_": 16,
|
102 |
+
"B-AUX|Mood=Des": 17,
|
103 |
+
"B-AUX|Mood=Nec": 18,
|
104 |
+
"B-AUX|Mood=Pot": 19,
|
105 |
+
"B-AUX|VerbType=Cop": 20,
|
106 |
+
"B-AUX|Voice=Pass": 21,
|
107 |
+
"B-CCONJ|_": 22,
|
108 |
+
"B-INTJ|_": 23,
|
109 |
+
"B-NOUN|Case=Loc": 24,
|
110 |
+
"B-NOUN|Case=Tem": 25,
|
111 |
+
"B-NOUN|NounType=Clf": 26,
|
112 |
+
"B-NOUN|_": 27,
|
113 |
+
"B-NUM|NumType=Ord": 28,
|
114 |
+
"B-NUM|_": 29,
|
115 |
+
"B-PART|_": 30,
|
116 |
+
"B-PRON|Person=1|PronType=Prs": 31,
|
117 |
+
"B-PRON|Person=2|PronType=Prs": 32,
|
118 |
+
"B-PRON|Person=3|PronType=Prs": 33,
|
119 |
+
"B-PRON|PronType=Dem": 34,
|
120 |
+
"B-PRON|PronType=Int": 35,
|
121 |
+
"B-PRON|PronType=Prs": 36,
|
122 |
+
"B-PRON|PronType=Prs|Reflex=Yes": 37,
|
123 |
+
"B-PROPN|Case=Loc|NameType=Geo": 38,
|
124 |
+
"B-PROPN|Case=Loc|NameType=Nat": 39,
|
125 |
+
"B-PROPN|NameType=Giv": 40,
|
126 |
+
"B-PROPN|NameType=Prs": 41,
|
127 |
+
"B-PROPN|NameType=Sur": 42,
|
128 |
+
"B-SCONJ|_": 43,
|
129 |
+
"B-SYM|_": 44,
|
130 |
+
"B-VERB|Degree=Equ": 45,
|
131 |
+
"B-VERB|Degree=Equ|VerbForm=Part": 46,
|
132 |
+
"B-VERB|Degree=Pos": 47,
|
133 |
+
"B-VERB|Degree=Pos|VerbForm=Part": 48,
|
134 |
+
"B-VERB|Polarity=Neg": 49,
|
135 |
+
"B-VERB|Polarity=Neg|VerbForm=Part": 50,
|
136 |
+
"B-VERB|VerbForm=Part": 51,
|
137 |
+
"B-VERB|_": 52,
|
138 |
+
"I-ADV|VerbForm=Conv": 53,
|
139 |
+
"I-NOUN|Case=Loc": 54,
|
140 |
+
"I-NOUN|Case=Tem": 55,
|
141 |
+
"I-NOUN|_": 56,
|
142 |
+
"I-NUM|NumType=Ord": 57,
|
143 |
+
"I-NUM|_": 58,
|
144 |
+
"I-PROPN|Case=Loc|NameType=Geo": 59,
|
145 |
+
"I-PROPN|Case=Loc|NameType=Nat": 60,
|
146 |
+
"I-PROPN|NameType=Giv": 61,
|
147 |
+
"I-PROPN|NameType=Prs": 62,
|
148 |
+
"I-PROPN|NameType=Sur": 63,
|
149 |
+
"I-VERB|Degree=Equ": 64,
|
150 |
+
"I-VERB|Degree=Pos": 65,
|
151 |
+
"I-VERB|VerbForm=Part": 66,
|
152 |
+
"I-VERB|_": 67
|
153 |
+
},
|
154 |
+
"layer_norm_eps": 1e-12,
|
155 |
+
"lstm_dropout_prob": 0.5,
|
156 |
+
"lstm_embedding_size": 768,
|
157 |
+
"max_position_embeddings": 512,
|
158 |
+
"model_type": "bert",
|
159 |
+
"num_attention_heads": 12,
|
160 |
+
"num_hidden_layers": 12,
|
161 |
+
"pad_token_id": 0,
|
162 |
+
"pooler_fc_size": 768,
|
163 |
+
"pooler_num_attention_heads": 12,
|
164 |
+
"pooler_num_fc_layers": 3,
|
165 |
+
"pooler_size_per_head": 128,
|
166 |
+
"pooler_type": "first_token_transform",
|
167 |
+
"position_embedding_type": "absolute",
|
168 |
+
"tokenizer_class": "BertTokenizer",
|
169 |
+
"torch_dtype": "float32",
|
170 |
+
"transformers_version": "4.19.4",
|
171 |
+
"type_vocab_size": 2,
|
172 |
+
"use_cache": true,
|
173 |
+
"vocab_size": 38208
|
174 |
+
}
|
tagger/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e054845e4212ceb70ee2fc8ae172efa45b284aea5abd445b6f4fd07ba8f62a00
|
3 |
+
size 459460755
|
tagger/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tagger/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "do_basic_tokenize": true, "never_split": null, "special_tokens_map_file": null, "tokenizer_class": "BertTokenizer"}
|
tagger/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|