File size: 6,622 Bytes
957bf44 65faa3d 957bf44 65faa3d 957bf44 65faa3d 957bf44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import numpy
from transformers import TokenClassificationPipeline,AutoTokenizer
try:
from transformers.utils import cached_file
except:
from transformers.file_utils import cached_path,hf_bucket_url
cached_file=lambda x,y:os.path.join(x,y) if os.path.isdir(x) else cached_path(hf_bucket_url(x,y))
class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
def __init__(self,**kwargs):
super().__init__(**kwargs)
x=self.model.config.label2id
y=[k for k in x if k.startswith("B-") or not (k.startswith("I-") or k.endswith("|root") or k.find("|l-")>0 or k.find("|r-")>0)]
self.transition=numpy.full((len(x),len(x)),numpy.nan)
for k,v in x.items():
for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
self.transition[v,x[j]]=0
def check_model_type(self,supported_models):
pass
def postprocess(self,model_outputs,**kwargs):
if "logits" not in model_outputs:
return self.postprocess(model_outputs[0],**kwargs)
m=model_outputs["logits"][0].numpy()
e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
z=e/e.sum(axis=-1,keepdims=True)
for i in range(m.shape[0]-1,0,-1):
m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
k=[numpy.nanargmax(m[0]+self.transition[0])]
for i in range(1,m.shape[0]):
k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
for i,t in reversed(list(enumerate(w))):
p=t.pop("entity")
if p.startswith("I-"):
w[i-1]["score"]=min(w[i-1]["score"],t["score"])
w[i-1]["end"]=w.pop(i)["end"]
elif p.startswith("B-"):
t["entity_group"]=p[2:]
else:
t["entity_group"]=p
for t in w:
t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
return w
class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline):
def __init__(self,**kwargs):
kwargs["aggregation_strategy"]="simple"
super().__init__(**kwargs)
self.oldtokenizer=AutoTokenizer.from_pretrained(self.tokenizer.name_or_path,merges_file=cached_file(self.tokenizer.name_or_path,"oldmerges.txt"))
x=self.model.config.label2id
self.root=numpy.full((len(x)),numpy.nan)
self.left_arc=numpy.full((len(x)),numpy.nan)
self.right_arc=numpy.full((len(x)),numpy.nan)
for k,v in x.items():
if k.endswith("|root"):
self.root[v]=0
elif k.find("|l-")>0:
self.left_arc[v]=0
elif k.find("|r-")>0:
self.right_arc[v]=0
def postprocess(self,model_outputs,**kwargs):
import torch
if "logits" not in model_outputs:
return self.postprocess(model_outputs[0],**kwargs)
m=model_outputs["logits"][0].numpy()
for i in range(m.shape[0]-1,0,-1):
m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
k=[numpy.nanargmax(m[0]+self.transition[0])]
for i in range(1,m.shape[0]):
k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
w=[{"entity":self.model.config.id2label[j],"start":s,"end":e} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
for i,t in reversed(list(enumerate(w))):
p=t.pop("entity")
if p.startswith("I-"):
w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
elif i>0 and w[i-1]["end"]>w[i]["start"]:
w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
elif p.startswith("B-"):
t["entity_group"]=p[2:]
else:
t["entity_group"]=p
d=[model_outputs["sentence"][t["start"]:t["end"]] for t in w]
for i in range(len(d)-1,-1,-1):
if d[i].startswith(" "):
j=len(d[i])-len(d[i].lstrip())
d[i]=d[i].lstrip()
w[i]["start"]+=j
if d[i].endswith(" "):
j=len(d[i])-len(d[i].rstrip())
d[i]=d[i].rstrip()
w[i]["end"]-=j
if d[i].strip()=="":
d.pop(i)
w.pop(i)
v=self.oldtokenizer(d,add_special_tokens=False)
e=self.model.get_input_embeddings().weight
m=[]
for x in v["input_ids"]:
if x==[]:
x=[self.tokenizer.unk_token_id]
m.append(e[x,:].sum(axis=0))
m.append(e[self.tokenizer.sep_token_id,:])
m.append(e[self.tokenizer.pad_token_id,:])
m=torch.stack(m).to(self.device)
k=list(range(len(d)+1))
e=[]
with torch.no_grad():
for i in range(len(d)):
e.append(self.model(inputs_embeds=torch.unsqueeze(m[k+list(range(i,len(d)))+[-1]*i,:],0)).logits[0,-len(d):,:])
e=torch.stack(e).cpu().numpy()
for i in range(len(d)):
for j in range(i):
e[-j-1,-i-1],e[-i-1,-j-1]=e[-i-1,i-j]+self.left_arc,e[-i-1,i-j]+self.right_arc
e[-i-1,-i-1]=e[-i-1,0]+self.root
m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
h=self.chu_liu_edmonds(m)
z=[i for i,j in enumerate(h) if i==j]
if len(z)>1:
k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
h=self.chu_liu_edmonds(m)
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
t=model_outputs["sentence"].replace("\n"," ")
u="# text = "+t+"\n"
for i,j in enumerate(d):
u+="\t".join([str(i+1),j,"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(d) and w[i]["end"]<w[i+1]["start"] else "SpaceAfter=No"])+"\n"
return u+"\n"
def chu_liu_edmonds(self,matrix):
h=numpy.nanargmax(matrix,axis=0)
x=[-1 if i==j else j for i,j in enumerate(h)]
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
y=[]
while x!=y:
y=list(x)
for i,j in enumerate(x):
x[i]=b(x,i,j)
if max(x)<0:
return h
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
z=matrix-numpy.nanmax(matrix,axis=0)
m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
h[i]=x[k[-1]] if k[-1]<len(x) else i
return h
|