File size: 6,622 Bytes
957bf44
65faa3d
 
 
 
 
 
957bf44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65faa3d
957bf44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65faa3d
957bf44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy
from transformers import TokenClassificationPipeline,AutoTokenizer
try:
  from transformers.utils import cached_file
except:
  from transformers.file_utils import cached_path,hf_bucket_url
  cached_file=lambda x,y:os.path.join(x,y) if os.path.isdir(x) else cached_path(hf_bucket_url(x,y))

class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
  def __init__(self,**kwargs):
    super().__init__(**kwargs)
    x=self.model.config.label2id
    y=[k for k in x if k.startswith("B-") or not (k.startswith("I-") or k.endswith("|root") or k.find("|l-")>0 or k.find("|r-")>0)]
    self.transition=numpy.full((len(x),len(x)),numpy.nan)
    for k,v in x.items():
      for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
        self.transition[v,x[j]]=0
  def check_model_type(self,supported_models):
    pass
  def postprocess(self,model_outputs,**kwargs):
    if "logits" not in model_outputs:
      return self.postprocess(model_outputs[0],**kwargs)
    m=model_outputs["logits"][0].numpy()
    e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
    z=e/e.sum(axis=-1,keepdims=True)
    for i in range(m.shape[0]-1,0,-1):
      m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
    k=[numpy.nanargmax(m[0]+self.transition[0])]
    for i in range(1,m.shape[0]):
      k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
    w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
    if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
      for i,t in reversed(list(enumerate(w))):
        p=t.pop("entity")
        if p.startswith("I-"):
          w[i-1]["score"]=min(w[i-1]["score"],t["score"])
          w[i-1]["end"]=w.pop(i)["end"]
        elif p.startswith("B-"):
          t["entity_group"]=p[2:]
        else:
          t["entity_group"]=p
    for t in w:
      t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
    return w

class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline):
  def __init__(self,**kwargs):
    kwargs["aggregation_strategy"]="simple"
    super().__init__(**kwargs)
    self.oldtokenizer=AutoTokenizer.from_pretrained(self.tokenizer.name_or_path,merges_file=cached_file(self.tokenizer.name_or_path,"oldmerges.txt"))
    x=self.model.config.label2id
    self.root=numpy.full((len(x)),numpy.nan)
    self.left_arc=numpy.full((len(x)),numpy.nan)
    self.right_arc=numpy.full((len(x)),numpy.nan)
    for k,v in x.items():
      if k.endswith("|root"):
        self.root[v]=0
      elif k.find("|l-")>0:
        self.left_arc[v]=0
      elif k.find("|r-")>0:
        self.right_arc[v]=0
  def postprocess(self,model_outputs,**kwargs):
    import torch
    if "logits" not in model_outputs:
      return self.postprocess(model_outputs[0],**kwargs)
    m=model_outputs["logits"][0].numpy()
    for i in range(m.shape[0]-1,0,-1):
      m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
    k=[numpy.nanargmax(m[0]+self.transition[0])]
    for i in range(1,m.shape[0]):
      k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
    w=[{"entity":self.model.config.id2label[j],"start":s,"end":e} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
    for i,t in reversed(list(enumerate(w))):
      p=t.pop("entity")
      if p.startswith("I-"):
        w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
      elif i>0 and w[i-1]["end"]>w[i]["start"]:
        w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
      elif p.startswith("B-"):
        t["entity_group"]=p[2:]
      else:
        t["entity_group"]=p
    d=[model_outputs["sentence"][t["start"]:t["end"]] for t in w]
    for i in range(len(d)-1,-1,-1):
      if d[i].startswith(" "):
        j=len(d[i])-len(d[i].lstrip())
        d[i]=d[i].lstrip()
        w[i]["start"]+=j
      if d[i].endswith(" "):
        j=len(d[i])-len(d[i].rstrip())
        d[i]=d[i].rstrip()
        w[i]["end"]-=j
      if d[i].strip()=="":
        d.pop(i)
        w.pop(i)
    v=self.oldtokenizer(d,add_special_tokens=False)
    e=self.model.get_input_embeddings().weight
    m=[]
    for x in v["input_ids"]:
      if x==[]:
        x=[self.tokenizer.unk_token_id]
      m.append(e[x,:].sum(axis=0))
    m.append(e[self.tokenizer.sep_token_id,:])
    m.append(e[self.tokenizer.pad_token_id,:])
    m=torch.stack(m).to(self.device)
    k=list(range(len(d)+1))
    e=[]
    with torch.no_grad():
      for i in range(len(d)):
        e.append(self.model(inputs_embeds=torch.unsqueeze(m[k+list(range(i,len(d)))+[-1]*i,:],0)).logits[0,-len(d):,:])
    e=torch.stack(e).cpu().numpy()
    for i in range(len(d)):
      for j in range(i):
        e[-j-1,-i-1],e[-i-1,-j-1]=e[-i-1,i-j]+self.left_arc,e[-i-1,i-j]+self.right_arc
      e[-i-1,-i-1]=e[-i-1,0]+self.root
    m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
    h=self.chu_liu_edmonds(m)
    z=[i for i,j in enumerate(h) if i==j]
    if len(z)>1:
      k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
      m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
      h=self.chu_liu_edmonds(m)
    q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
    t=model_outputs["sentence"].replace("\n"," ")
    u="# text = "+t+"\n"
    for i,j in enumerate(d):
      u+="\t".join([str(i+1),j,"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(d) and w[i]["end"]<w[i+1]["start"] else "SpaceAfter=No"])+"\n"
    return u+"\n"
  def chu_liu_edmonds(self,matrix):
    h=numpy.nanargmax(matrix,axis=0)
    x=[-1 if i==j else j for i,j in enumerate(h)]
    for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
      y=[]
      while x!=y:
        y=list(x)
        for i,j in enumerate(x):
          x[i]=b(x,i,j)
      if max(x)<0:
        return h
    y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
    z=matrix-numpy.nanmax(matrix,axis=0)
    m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
    k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
    h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
    i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
    h[i]=x[k[-1]] if k[-1]<len(x) else i
    return h