File size: 5,319 Bytes
957bf44
 
 
 
 
 
 
 
 
 
65faa3d
 
957bf44
 
65faa3d
957bf44
 
 
 
 
 
 
65faa3d
 
957bf44
65faa3d
957bf44
65faa3d
957bf44
 
 
65faa3d
957bf44
 
65faa3d
957bf44
 
65faa3d
957bf44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65faa3d
957bf44
 
 
 
 
 
 
 
 
65faa3d
957bf44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65faa3d
 
 
957bf44
 
 
 
 
 
 
 
 
65faa3d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#! /usr/bin/python3
src="Kendamarron/Tokara-0.5B-v0.1"
tgt="KoichiYasuoka/Tokara-0.5B-ud-causal"
url="https://github.com/UniversalDependencies/UD_Japanese-GSDLUW"

import os,json,unicodedata
from transformers import AutoTokenizer,AutoConfig,Qwen2ForTokenClassification,DefaultDataCollator,TrainingArguments,Trainer
d=os.path.basename(url)
os.system("test -d "+d+" || git clone --depth=1 "+url)
os.system("for F in train dev test ; do cp "+d+"/*-$F.conllu $F.conllu ; done")
otk=AutoTokenizer.from_pretrained(src,unk_token="<|im_start|>",sep_token="<|im_end|>")
otk.save_pretrained("tmpdir")
os.rename("tmpdir/tokenizer.json","tmpdir/tokenizer.json.old")
os.rename("tmpdir/merges.txt","tmpdir/oldmerges.txt")
d=json.loads(otk.backend_tokenizer.to_str())
form=set()
with open("train.conllu","r",encoding="utf-8") as r:
  for s in r:
    w=s.split("\t")
    if len(w)==10 and w[0].isdecimal():
      form.add(w[1])
m=[t for t in d["model"]["merges"] if len(t)<5 and unicodedata.category(t[0])[0]!="P"]
for i in range(len(otk)):
  w=otk.decode(i)
  if len(w)==2 and w in form and not unicodedata.name(w[0]).startswith("HIRAGANA"):
    k=otk([w[0],w[1]],add_special_tokens=False)["input_ids"]
    if len(k[0])==1 and len(k[1])==1:
      m.append(" ".join(otk.convert_ids_to_tokens([k[0][0],k[1][0]])))
with open("tmpdir/merges.txt","w",encoding="utf-8") as w:
  print("#version: 0.2",file=w)
  print("\n".join(m),file=w)
ntk=AutoTokenizer.from_pretrained("tmpdir")

class UDCausalDataset(object):
  def __init__(self,conllu,tokenizer,oldtokenizer=None,embeddings=None):
    self.conllu=open(conllu,"r",encoding="utf-8")
    self.tokenizer=tokenizer
    self.oldtokenizer=oldtokenizer if oldtokenizer else tokenizer
    self.embeddings=embeddings
    self.max_tokens=3
    self.seeks=[(0,0)]
    label=set(["SYM"])
    dep=set()
    s=self.conllu.readline()
    while s!="":
      if s=="\n":
        self.seeks.append((self.conllu.tell(),0))
      else:
        w=s.split("\t")
        if len(w)==10:
          if w[0].isdecimal():
            p=w[3] if w[5]=="_" else w[3]+"|"+w[5]
            label.add(p)
            dep.add(p+("|" if w[6]=="0" else "|l-" if int(w[0])<int(w[6]) else "|r-")+w[7])
            self.seeks.append((self.seeks[-1][0],int(w[0])))
            self.max_tokens=max(self.max_tokens,int(w[0])*2+1)
      s=self.conllu.readline()
    lid={}
    for i,l in enumerate(sorted(label)):
      lid[l],lid["B-"+l],lid["I-"+l]=i*3,i*3+1,i*3+2
    for i,d in enumerate(sorted(dep),len(lid)):
      lid[d]=i
    self.label2id=lid
  def __call__(*args):
    lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))}
    for t in args:
      t.label2id=lid
    return lid
  def __del__(self):
    self.conllu.close()
  __len__=lambda self:len(self.seeks)-1
  def __getitem__(self,i):
    s,t=self.seeks[i]
    self.conllu.seek(s)
    form,upos,deps,w=[],[],[],[""]
    while w[0]!="\n":
      w=self.conllu.readline().split("\t")
      if len(w)==10:
        form.append(w[1])
        if w[0].isdecimal():
          upos.append(w[3] if w[5]=="_" else w[3]+"|"+w[5])
          deps.append((int(w[6]),w[7]))
    if t==0:
      v=self.tokenizer(form,add_special_tokens=False)
      i,u=[],[]
      for j,(x,y) in enumerate(zip(v["input_ids"],upos)):
        if x!=[]:
          i+=x
          u+=[y] if len(x)==1 else ["B-"+y]+["I-"+y]*(len(x)-1)
      emb=self.embeddings
      pad=self.tokenizer.pad_token_id
    else:
      import torch
      v=self.oldtokenizer(form,add_special_tokens=False)
      m=[]
      for x in v["input_ids"]:
        if x==[]:
          m.append(self.embeddings[self.tokenizer.unk_token_id,:])
        else:
          m.append(self.embeddings[x,:].sum(axis=0))
      m.append(self.embeddings[self.tokenizer.sep_token_id,:])
      m.append(self.embeddings[self.tokenizer.pad_token_id,:])
      emb=torch.stack(m)
      i,u=list(range(len(upos)+1)),upos+["SYM"]
      i.append(t-1)
      k,d=deps[t-1]
      u.append(upos[t-1]+"|"+d if k==0 else upos[t-1])
      for j in range(t,len(upos)):
        i.append(j)
        a,b=deps[j]
        u.append(upos[j]+"|r-"+b if a==t else upos[t-1]+"|l-"+d if j+1==k else upos[j])
      pad=-1
    j=self.max_tokens-len(i)
    if j>0:
      ids=i+[pad]*j
      upos=u+["SYM"]*j
    else:
      ids=i[0:self.max_tokens]
      upos=u[0:self.max_tokens]
    return {"inputs_embeds":emb[ids,:],"labels":[self.label2id[p] for p in upos]}

trainDS=UDCausalDataset("train.conllu",ntk,otk)
devDS=UDCausalDataset("dev.conllu",ntk,otk)
testDS=UDCausalDataset("test.conllu",ntk,otk)
lid=trainDS(devDS,testDS)
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True)
mdl=Qwen2ForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True)
trainDS.embeddings=mdl.get_input_embeddings().weight
trainDS.max_tokens=min(trainDS.max_tokens,cfg.max_position_embeddings)
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=32,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
trn=Trainer(args=arg,data_collator=DefaultDataCollator(),model=mdl,train_dataset=trainDS)
trn.train()
trn.save_model(tgt)
ntk.save_pretrained(tgt)