|
#! /bin/sh |
|
test -f ja_gsd_modern.conllu || curl -LO https://github.com/KoichiYasuoka/SuPar-UniDic/raw/main/suparunidic/suparmodels/ja_gsd_modern.conllu |
|
|
|
if [ ! -d exRakutenAI-7B ] |
|
then TMPA=./maker$$a.py |
|
cat << 'EOF' > $TMPA |
|
|
|
src="Rakuten/RakutenAI-7B" |
|
tgt="exRakutenAI-7B" |
|
import json,torch,unicodedata |
|
from transformers import LlamaTokenizerFast,LlamaForCausalLM |
|
tkz=LlamaTokenizerFast.from_pretrained(src,cls_token="<s>",sep_token="<s>",mask_token="<unk>",pad_token="</s>") |
|
d=json.loads(tkz.backend_tokenizer.to_str()) |
|
tkz.backend_tokenizer.from_str(json.dumps(d)).save("tokenizer.json") |
|
mdl=LlamaForCausalLM.from_pretrained(src) |
|
tkz=LlamaTokenizerFast(tokenizer_file="tokenizer.json",model_max_length=mdl.config.max_position_embeddings,cls_token="<s>",sep_token="<s>",mask_token="<unk>",pad_token="</s>") |
|
e=mdl.resize_token_embeddings(len(tkz)) |
|
f=mdl.get_output_embeddings() |
|
mdl.set_input_embeddings(e) |
|
mdl.set_output_embeddings(f) |
|
mdl.save_pretrained(tgt) |
|
tkz.save_pretrained(tgt) |
|
EOF |
|
chmod 755 $TMPA |
|
$TMPA |
|
fi |
|
|
|
TMPB=./maker$$b.py |
|
cat << 'EOF' > $TMPB |
|
|
|
src="exRakutenAI-7B" |
|
tgt="KoichiYasuoka/RakutenAI-7B-upos" |
|
from transformers import LlamaTokenizerFast,MistralModel,MistralPreTrainedModel,AutoConfig,DataCollatorForTokenClassification,TrainingArguments,Trainer |
|
from transformers.modeling_outputs import TokenClassifierOutput |
|
from tokenizers.normalizers import Replace |
|
|
|
class MistralForTokenClassification(MistralPreTrainedModel): |
|
def __init__(self,config): |
|
from torch import nn |
|
super().__init__(config) |
|
self.num_labels=config.num_labels |
|
self.model=MistralModel(config) |
|
if hasattr(config,"classifier_dropout") and config.classifier_dropout is not None: |
|
classifier_dropout=config.classifier_dropout |
|
elif hasattr(config,"hidden_dropout") and config.hidden_dropout is not None: |
|
classifier_dropout=config.hidden_dropout |
|
else: |
|
classifier_dropout=0.1 |
|
self.dropout=nn.Dropout(classifier_dropout) |
|
self.classifier=nn.Linear(config.hidden_size,config.num_labels) |
|
self.post_init() |
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
def set_input_embeddings(self,value): |
|
self.model.embed_tokens=value |
|
def forward(self,input_ids=None,past_key_values=None,attention_mask=None,position_ids=None,inputs_embeds=None,labels=None,use_cache=None,output_attentions=None,output_hidden_states=None,return_dict=None): |
|
return_dict=return_dict if return_dict is not None else self.config.use_return_dict |
|
transformer_outputs=self.model(input_ids,past_key_values=past_key_values,attention_mask=attention_mask,position_ids=position_ids,inputs_embeds=inputs_embeds,use_cache=use_cache,output_attentions=output_attentions,output_hidden_states=output_hidden_states,return_dict=return_dict) |
|
hidden_states=transformer_outputs[0] |
|
hidden_states=self.dropout(hidden_states) |
|
logits=self.classifier(hidden_states) |
|
loss=None |
|
if labels is not None: |
|
from torch import nn |
|
loss_fct=nn.CrossEntropyLoss() |
|
loss=loss_fct(logits.view(-1,self.num_labels),labels.view(-1)) |
|
if not return_dict: |
|
output=(logits,)+transformer_outputs[2:] |
|
return ((loss,)+output) if loss is not None else output |
|
return TokenClassifierOutput(loss=loss,logits=logits,hidden_states=transformer_outputs.hidden_states,attentions=transformer_outputs.attentions) |
|
|
|
class UPOSFileDataset(object): |
|
def __init__(self,conllu,tokenizer): |
|
self.conllu=open(conllu,"r",encoding="utf-8") |
|
self.tokenizer=tokenizer |
|
self.seeks=[0] |
|
self.multiword={} |
|
label=set(["SYM"]) |
|
s=self.conllu.readline() |
|
while s!="": |
|
if s=="\n": |
|
self.seeks.append(self.conllu.tell()) |
|
else: |
|
w=s.split("\t") |
|
if len(w)==10: |
|
if w[0].isdecimal(): |
|
label.add(w[3] if w[5]=="_" else w[3]+"|"+w[5]) |
|
elif w[0].find("-")>0: |
|
t=w[0].split("-") |
|
f,j,k=w[1],[],[] |
|
for i in range(int(t[0]),int(t[1])+1): |
|
w=self.conllu.readline().split("\t") |
|
j.append(w[3] if w[5]=="_" else w[3]+"|"+w[5]) |
|
k.append(w[1]) |
|
p="+".join(j) |
|
label.add(p) |
|
if p in self.multiword: |
|
self.multiword[p][f]=list(k) |
|
else: |
|
self.multiword[p]={f:list(k)} |
|
s=self.conllu.readline() |
|
lid={} |
|
for i,l in enumerate(sorted(label)): |
|
lid[l],lid["B-"+l],lid["I-"+l]=i*3,i*3+1,i*3+2 |
|
self.label2id=lid |
|
def __call__(*args): |
|
lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))} |
|
for t in args: |
|
t.label2id=lid |
|
return lid |
|
def __del__(self): |
|
self.conllu.close() |
|
__len__=lambda self:len(self.seeks)-1 |
|
def __getitem__(self,i): |
|
self.conllu.seek(self.seeks[i]) |
|
form,upos=[],[] |
|
while self.conllu.tell()<self.seeks[i+1]: |
|
w=self.conllu.readline().split("\t") |
|
if len(w)==10: |
|
form.append(w[1]) |
|
if w[0].isdecimal(): |
|
upos.append(w[3] if w[5]=="_" else w[3]+"|"+w[5]) |
|
elif w[0].find("-")>0: |
|
t=w[0].split("-") |
|
u=[] |
|
for j in range(int(t[0]),int(t[1])+1): |
|
k=self.conllu.readline().split("\t") |
|
u.append(k[3] if k[5]=="_" else k[3]+"|"+k[5]) |
|
upos.append("+".join(u)) |
|
v=self.tokenizer(form,add_special_tokens=False) |
|
i,u=[],[] |
|
for j,(x,y) in enumerate(zip(v["input_ids"],upos)): |
|
if x!=[]: |
|
i+=x |
|
u+=[y] if len(x)==1 else ["B-"+y]+["I-"+y]*(len(x)-1) |
|
if len(i)<self.tokenizer.model_max_length-3: |
|
ids=[self.tokenizer.cls_token_id]+i+[self.tokenizer.sep_token_id] |
|
upos=["SYM"]+u+["SYM"] |
|
else: |
|
ids=i[0:self.tokenizer.model_max_length-2] |
|
upos=u[0:self.tokenizer.model_max_length-2] |
|
return {"input_ids":ids,"labels":[self.label2id[t] for t in upos]} |
|
|
|
tkz=LlamaTokenizerFast.from_pretrained(src) |
|
tkz.backend_tokenizer.normalizer=Replace(" ","\u2581") |
|
tkz.backend_tokenizer.model.byte_fallback=False |
|
trainDS=UPOSFileDataset("ja_gsd_modern.conllu",tkz) |
|
lid=trainDS.label2id |
|
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True) |
|
dsp={"fp16":{"enabled":"auto"},"optimizer":{"type":"AdamW"},"scheduler":{"type":"WarmupLR","params":{}},"train_batch_size":"auto","train_micro_batch_size_per_gpu":"auto","zero_optimization":{"stage":3,"offload_optimizer":{"device":"cpu","pin_memory":True},"offload_param":{"device":"cpu","pin_memory":True},"overlap_comm":True,"contiguous_gradients":True,"reduce_bucket_size":"auto","stage3_prefetch_bucket_size":"auto","stage3_param_persistence_threshold":"auto","stage3_gather_16bit_weights_on_model_save":True}} |
|
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=8,deepspeed=dsp,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False) |
|
trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=MistralForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True),train_dataset=trainDS) |
|
trn.train() |
|
trn.save_model(tgt) |
|
tkz.save_pretrained(tgt) |
|
EOF |
|
chmod 755 $TMPB |
|
$TMPB |
|
exit |
|
|