End of training
Browse files- README.md +142 -0
- config.json +374 -0
- model.safetensors +3 -0
- preprocessor_config.json +23 -0
- runs/Jan21_04-13-25_jupyter-demo07/events.out.tfevents.1737432877.jupyter-demo07.166.0 +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: nvidia/segformer-b1-finetuned-ade-512-512
|
5 |
+
tags:
|
6 |
+
- vision
|
7 |
+
- image-segmentation
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: my-fine-tuned-model
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# my-fine-tuned-model
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the segments/sidewalk-semantic dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.8650
|
22 |
+
- Mean Iou: 0.1979
|
23 |
+
- Mean Accuracy: 0.2600
|
24 |
+
- Overall Accuracy: 0.7844
|
25 |
+
- Accuracy Unlabeled: nan
|
26 |
+
- Accuracy Flat-road: 0.7636
|
27 |
+
- Accuracy Flat-sidewalk: 0.9369
|
28 |
+
- Accuracy Flat-crosswalk: 0.6233
|
29 |
+
- Accuracy Flat-cyclinglane: 0.5039
|
30 |
+
- Accuracy Flat-parkingdriveway: 0.3350
|
31 |
+
- Accuracy Flat-railtrack: nan
|
32 |
+
- Accuracy Flat-curb: 0.3609
|
33 |
+
- Accuracy Human-person: 0.0041
|
34 |
+
- Accuracy Human-rider: 0.0
|
35 |
+
- Accuracy Vehicle-car: 0.9008
|
36 |
+
- Accuracy Vehicle-truck: 0.0
|
37 |
+
- Accuracy Vehicle-bus: 0.0
|
38 |
+
- Accuracy Vehicle-tramtrain: 0.0
|
39 |
+
- Accuracy Vehicle-motorcycle: 0.0
|
40 |
+
- Accuracy Vehicle-bicycle: 0.0005
|
41 |
+
- Accuracy Vehicle-caravan: 0.0
|
42 |
+
- Accuracy Vehicle-cartrailer: 0.0
|
43 |
+
- Accuracy Construction-building: 0.8702
|
44 |
+
- Accuracy Construction-door: 0.0
|
45 |
+
- Accuracy Construction-wall: 0.3334
|
46 |
+
- Accuracy Construction-fenceguardrail: 0.1194
|
47 |
+
- Accuracy Construction-bridge: 0.0
|
48 |
+
- Accuracy Construction-tunnel: 0.0
|
49 |
+
- Accuracy Construction-stairs: 0.0
|
50 |
+
- Accuracy Object-pole: 0.0637
|
51 |
+
- Accuracy Object-trafficsign: 0.0
|
52 |
+
- Accuracy Object-trafficlight: 0.0
|
53 |
+
- Accuracy Nature-vegetation: 0.9057
|
54 |
+
- Accuracy Nature-terrain: 0.8349
|
55 |
+
- Accuracy Sky: 0.9210
|
56 |
+
- Accuracy Void-ground: 0.0339
|
57 |
+
- Accuracy Void-dynamic: 0.0032
|
58 |
+
- Accuracy Void-static: 0.0657
|
59 |
+
- Accuracy Void-unclear: 0.0
|
60 |
+
- Iou Unlabeled: 0.0
|
61 |
+
- Iou Flat-road: 0.6053
|
62 |
+
- Iou Flat-sidewalk: 0.7972
|
63 |
+
- Iou Flat-crosswalk: 0.4947
|
64 |
+
- Iou Flat-cyclinglane: 0.4639
|
65 |
+
- Iou Flat-parkingdriveway: 0.2544
|
66 |
+
- Iou Flat-railtrack: 0.0
|
67 |
+
- Iou Flat-curb: 0.2330
|
68 |
+
- Iou Human-person: 0.0041
|
69 |
+
- Iou Human-rider: 0.0
|
70 |
+
- Iou Vehicle-car: 0.6748
|
71 |
+
- Iou Vehicle-truck: 0.0
|
72 |
+
- Iou Vehicle-bus: 0.0
|
73 |
+
- Iou Vehicle-tramtrain: 0.0
|
74 |
+
- Iou Vehicle-motorcycle: 0.0
|
75 |
+
- Iou Vehicle-bicycle: 0.0005
|
76 |
+
- Iou Vehicle-caravan: 0.0
|
77 |
+
- Iou Vehicle-cartrailer: 0.0
|
78 |
+
- Iou Construction-building: 0.6517
|
79 |
+
- Iou Construction-door: 0.0
|
80 |
+
- Iou Construction-wall: 0.2393
|
81 |
+
- Iou Construction-fenceguardrail: 0.0990
|
82 |
+
- Iou Construction-bridge: 0.0
|
83 |
+
- Iou Construction-tunnel: 0.0
|
84 |
+
- Iou Construction-stairs: 0.0
|
85 |
+
- Iou Object-pole: 0.0522
|
86 |
+
- Iou Object-trafficsign: 0.0
|
87 |
+
- Iou Object-trafficlight: 0.0
|
88 |
+
- Iou Nature-vegetation: 0.7891
|
89 |
+
- Iou Nature-terrain: 0.6367
|
90 |
+
- Iou Sky: 0.8417
|
91 |
+
- Iou Void-ground: 0.0306
|
92 |
+
- Iou Void-dynamic: 0.0031
|
93 |
+
- Iou Void-static: 0.0567
|
94 |
+
- Iou Void-unclear: 0.0
|
95 |
+
|
96 |
+
## Model description
|
97 |
+
|
98 |
+
More information needed
|
99 |
+
|
100 |
+
## Intended uses & limitations
|
101 |
+
|
102 |
+
More information needed
|
103 |
+
|
104 |
+
## Training and evaluation data
|
105 |
+
|
106 |
+
More information needed
|
107 |
+
|
108 |
+
## Training procedure
|
109 |
+
|
110 |
+
### Training hyperparameters
|
111 |
+
|
112 |
+
The following hyperparameters were used during training:
|
113 |
+
- learning_rate: 6e-05
|
114 |
+
- train_batch_size: 8
|
115 |
+
- eval_batch_size: 8
|
116 |
+
- seed: 42
|
117 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
118 |
+
- lr_scheduler_type: linear
|
119 |
+
- num_epochs: 2
|
120 |
+
|
121 |
+
### Training results
|
122 |
+
|
123 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|
124 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
|
125 |
+
| 2.5085 | 0.2 | 20 | 2.7797 | 0.0732 | 0.1076 | 0.4652 | nan | 0.5841 | 0.7791 | 0.0055 | 0.2836 | 0.0034 | nan | 0.0 | 0.0 | 0.0 | 0.5620 | 0.0 | 0.0198 | 0.0 | 0.0004 | 0.0004 | 0.0 | 0.0535 | 0.0891 | 0.0012 | 0.0003 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3935 | 0.6589 | 0.1063 | 0.0 | 0.0081 | 0.0 | 0.0 | 0.0 | 0.3763 | 0.6424 | 0.0019 | 0.2150 | 0.0033 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2835 | 0.0 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 0.0 | 0.0000 | 0.0859 | 0.0011 | 0.0002 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3843 | 0.4577 | 0.1061 | 0.0 | 0.0024 | 0.0 | 0.0 |
|
126 |
+
| 2.4875 | 0.4 | 40 | 1.7587 | 0.1295 | 0.1722 | 0.6580 | nan | 0.7729 | 0.8313 | 0.0254 | 0.3069 | 0.0016 | nan | 0.0005 | 0.0 | 0.0 | 0.7856 | 0.0 | 0.0017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0044 | 0.6115 | 0.0009 | 0.0148 | 0.0122 | 0.0 | 0.0 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.8782 | 0.6807 | 0.7454 | 0.0 | 0.0067 | 0.0 | 0.0 | 0.0 | 0.4677 | 0.7337 | 0.0129 | 0.2895 | 0.0016 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.5336 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.4970 | 0.0009 | 0.0130 | 0.0114 | 0.0 | 0.0 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.7164 | 0.5249 | 0.7231 | 0.0 | 0.0030 | 0.0 | 0.0 |
|
127 |
+
| 1.4979 | 0.6 | 60 | 1.3253 | 0.1478 | 0.2057 | 0.6899 | nan | 0.8068 | 0.8066 | 0.1982 | 0.4657 | 0.2635 | nan | 0.0285 | 0.0 | 0.0 | 0.8709 | 0.0 | 0.0017 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.6424 | 0.0000 | 0.1611 | 0.0051 | 0.0 | 0.0 | 0.0 | 0.0138 | 0.0 | 0.0 | 0.8751 | 0.7601 | 0.8505 | 0.0261 | 0.0108 | 0.0001 | 0.0 | 0.0 | 0.4953 | 0.7315 | 0.1383 | 0.3556 | 0.1491 | 0.0 | 0.0266 | 0.0 | 0.0 | 0.4975 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.5333 | 0.0000 | 0.1061 | 0.0049 | 0.0 | 0.0 | 0.0 | 0.0122 | 0.0 | 0.0 | 0.7534 | 0.5484 | 0.7903 | 0.0243 | 0.0045 | 0.0001 | 0.0 |
|
128 |
+
| 1.2341 | 0.8 | 80 | 1.2097 | 0.1612 | 0.2131 | 0.7259 | nan | 0.5034 | 0.9552 | 0.5156 | 0.4170 | 0.1216 | nan | 0.1390 | 0.0 | 0.0003 | 0.8090 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8904 | 0.0 | 0.1239 | 0.0350 | 0.0 | 0.0 | 0.0 | 0.0102 | 0.0 | 0.0 | 0.8813 | 0.7535 | 0.8759 | 0.0 | 0.0013 | 0.0003 | 0.0 | 0.0 | 0.4375 | 0.7135 | 0.3661 | 0.3521 | 0.1009 | 0.0 | 0.1176 | 0.0 | 0.0000 | 0.6389 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5992 | 0.0 | 0.0962 | 0.0306 | 0.0 | 0.0 | 0.0 | 0.0092 | 0.0 | 0.0 | 0.7711 | 0.5926 | 0.8134 | 0.0 | 0.0011 | 0.0003 | 0.0 |
|
129 |
+
| 1.594 | 1.0 | 100 | 1.0384 | 0.1687 | 0.2260 | 0.7523 | nan | 0.8702 | 0.8883 | 0.3212 | 0.4611 | 0.1767 | nan | 0.1078 | 0.0 | 0.0013 | 0.8716 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0023 | 0.0 | 0.0 | 0.8338 | 0.0 | 0.2006 | 0.0366 | 0.0 | 0.0 | 0.0 | 0.0374 | 0.0 | 0.0 | 0.8996 | 0.8280 | 0.8915 | 0.0 | 0.0008 | 0.0306 | 0.0 | 0.0 | 0.5099 | 0.7920 | 0.2474 | 0.4321 | 0.1507 | 0.0 | 0.0913 | 0.0 | 0.0003 | 0.6235 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0020 | 0.0 | 0.0 | 0.6274 | 0.0 | 0.1603 | 0.0337 | 0.0 | 0.0 | 0.0 | 0.0300 | 0.0 | 0.0 | 0.7659 | 0.5944 | 0.8171 | 0.0 | 0.0008 | 0.0260 | 0.0 |
|
130 |
+
| 0.7624 | 1.2 | 120 | 0.9402 | 0.1852 | 0.2479 | 0.7620 | nan | 0.6183 | 0.9445 | 0.6022 | 0.5182 | 0.2131 | nan | 0.3901 | 0.0 | 0.0008 | 0.8980 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8681 | 0.0000 | 0.2897 | 0.1158 | 0.0 | 0.0 | 0.0 | 0.0470 | 0.0 | 0.0 | 0.8860 | 0.8323 | 0.9143 | 0.0032 | 0.0017 | 0.0376 | 0.0 | 0.0 | 0.5142 | 0.7737 | 0.4531 | 0.4391 | 0.1737 | 0.0 | 0.2176 | 0.0 | 0.0002 | 0.6419 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6411 | 0.0000 | 0.2041 | 0.0941 | 0.0 | 0.0 | 0.0 | 0.0376 | 0.0 | 0.0 | 0.7853 | 0.6371 | 0.8329 | 0.0029 | 0.0016 | 0.0328 | 0.0 |
|
131 |
+
| 1.1404 | 1.4 | 140 | 0.9037 | 0.1937 | 0.2559 | 0.7761 | nan | 0.7507 | 0.9337 | 0.6121 | 0.5261 | 0.2748 | nan | 0.2728 | 0.0007 | 0.0 | 0.8756 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.8461 | 0.0000 | 0.4180 | 0.1162 | 0.0 | 0.0 | 0.0 | 0.0773 | 0.0 | 0.0 | 0.9055 | 0.8279 | 0.9024 | 0.0404 | 0.0019 | 0.0623 | 0.0 | 0.0 | 0.5682 | 0.7933 | 0.4733 | 0.4630 | 0.2328 | 0.0 | 0.1898 | 0.0007 | 0.0 | 0.6841 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.6414 | 0.0000 | 0.2357 | 0.0930 | 0.0 | 0.0 | 0.0 | 0.0561 | 0.0 | 0.0 | 0.7862 | 0.6368 | 0.8350 | 0.0348 | 0.0018 | 0.0532 | 0.0 |
|
132 |
+
| 0.7949 | 1.6 | 160 | 0.8834 | 0.1959 | 0.2559 | 0.7833 | nan | 0.7455 | 0.9427 | 0.6186 | 0.5220 | 0.3557 | nan | 0.3018 | 0.0044 | 0.0 | 0.9011 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.8695 | 0.0 | 0.3135 | 0.1094 | 0.0 | 0.0 | 0.0 | 0.0602 | 0.0 | 0.0 | 0.9121 | 0.7871 | 0.9168 | 0.0254 | 0.0012 | 0.0554 | 0.0 | 0.0 | 0.5954 | 0.7952 | 0.4864 | 0.4753 | 0.2686 | 0.0 | 0.2131 | 0.0044 | 0.0 | 0.6642 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0011 | 0.0 | 0.0 | 0.6427 | 0.0 | 0.2290 | 0.0919 | 0.0 | 0.0 | 0.0 | 0.0486 | 0.0 | 0.0 | 0.7904 | 0.6367 | 0.8404 | 0.0234 | 0.0011 | 0.0493 | 0.0 |
|
133 |
+
| 1.1158 | 1.8 | 180 | 0.8739 | 0.1967 | 0.2579 | 0.7829 | nan | 0.7531 | 0.9429 | 0.6044 | 0.4876 | 0.3491 | nan | 0.3338 | 0.0041 | 0.0 | 0.8976 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.8643 | 0.0 | 0.3477 | 0.1201 | 0.0 | 0.0 | 0.0 | 0.0602 | 0.0 | 0.0 | 0.9064 | 0.8280 | 0.9161 | 0.0301 | 0.0027 | 0.0612 | 0.0 | 0.0 | 0.6023 | 0.7929 | 0.4754 | 0.4542 | 0.2581 | 0.0 | 0.2261 | 0.0041 | 0.0 | 0.6759 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.6505 | 0.0 | 0.2436 | 0.0991 | 0.0 | 0.0 | 0.0 | 0.0493 | 0.0 | 0.0 | 0.7883 | 0.6363 | 0.8424 | 0.0275 | 0.0026 | 0.0538 | 0.0 |
|
134 |
+
| 0.9007 | 2.0 | 200 | 0.8650 | 0.1979 | 0.2600 | 0.7844 | nan | 0.7636 | 0.9369 | 0.6233 | 0.5039 | 0.3350 | nan | 0.3609 | 0.0041 | 0.0 | 0.9008 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.8702 | 0.0 | 0.3334 | 0.1194 | 0.0 | 0.0 | 0.0 | 0.0637 | 0.0 | 0.0 | 0.9057 | 0.8349 | 0.9210 | 0.0339 | 0.0032 | 0.0657 | 0.0 | 0.0 | 0.6053 | 0.7972 | 0.4947 | 0.4639 | 0.2544 | 0.0 | 0.2330 | 0.0041 | 0.0 | 0.6748 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.6517 | 0.0 | 0.2393 | 0.0990 | 0.0 | 0.0 | 0.0 | 0.0522 | 0.0 | 0.0 | 0.7891 | 0.6367 | 0.8417 | 0.0306 | 0.0031 | 0.0567 | 0.0 |
|
135 |
+
|
136 |
+
|
137 |
+
### Framework versions
|
138 |
+
|
139 |
+
- Transformers 4.48.0
|
140 |
+
- Pytorch 2.1.1+cu118
|
141 |
+
- Datasets 3.2.0
|
142 |
+
- Tokenizers 0.21.0
|
config.json
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/segformer-b1-finetuned-ade-512-512",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 256,
|
9 |
+
"depths": [
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "wall",
|
32 |
+
"1": "building",
|
33 |
+
"2": "sky",
|
34 |
+
"3": "floor",
|
35 |
+
"4": "tree",
|
36 |
+
"5": "ceiling",
|
37 |
+
"6": "road",
|
38 |
+
"7": "bed ",
|
39 |
+
"8": "windowpane",
|
40 |
+
"9": "grass",
|
41 |
+
"10": "cabinet",
|
42 |
+
"11": "sidewalk",
|
43 |
+
"12": "person",
|
44 |
+
"13": "earth",
|
45 |
+
"14": "door",
|
46 |
+
"15": "table",
|
47 |
+
"16": "mountain",
|
48 |
+
"17": "plant",
|
49 |
+
"18": "curtain",
|
50 |
+
"19": "chair",
|
51 |
+
"20": "car",
|
52 |
+
"21": "water",
|
53 |
+
"22": "painting",
|
54 |
+
"23": "sofa",
|
55 |
+
"24": "shelf",
|
56 |
+
"25": "house",
|
57 |
+
"26": "sea",
|
58 |
+
"27": "mirror",
|
59 |
+
"28": "rug",
|
60 |
+
"29": "field",
|
61 |
+
"30": "armchair",
|
62 |
+
"31": "seat",
|
63 |
+
"32": "fence",
|
64 |
+
"33": "desk",
|
65 |
+
"34": "rock",
|
66 |
+
"35": "wardrobe",
|
67 |
+
"36": "lamp",
|
68 |
+
"37": "bathtub",
|
69 |
+
"38": "railing",
|
70 |
+
"39": "cushion",
|
71 |
+
"40": "base",
|
72 |
+
"41": "box",
|
73 |
+
"42": "column",
|
74 |
+
"43": "signboard",
|
75 |
+
"44": "chest of drawers",
|
76 |
+
"45": "counter",
|
77 |
+
"46": "sand",
|
78 |
+
"47": "sink",
|
79 |
+
"48": "skyscraper",
|
80 |
+
"49": "fireplace",
|
81 |
+
"50": "refrigerator",
|
82 |
+
"51": "grandstand",
|
83 |
+
"52": "path",
|
84 |
+
"53": "stairs",
|
85 |
+
"54": "runway",
|
86 |
+
"55": "case",
|
87 |
+
"56": "pool table",
|
88 |
+
"57": "pillow",
|
89 |
+
"58": "screen door",
|
90 |
+
"59": "stairway",
|
91 |
+
"60": "river",
|
92 |
+
"61": "bridge",
|
93 |
+
"62": "bookcase",
|
94 |
+
"63": "blind",
|
95 |
+
"64": "coffee table",
|
96 |
+
"65": "toilet",
|
97 |
+
"66": "flower",
|
98 |
+
"67": "book",
|
99 |
+
"68": "hill",
|
100 |
+
"69": "bench",
|
101 |
+
"70": "countertop",
|
102 |
+
"71": "stove",
|
103 |
+
"72": "palm",
|
104 |
+
"73": "kitchen island",
|
105 |
+
"74": "computer",
|
106 |
+
"75": "swivel chair",
|
107 |
+
"76": "boat",
|
108 |
+
"77": "bar",
|
109 |
+
"78": "arcade machine",
|
110 |
+
"79": "hovel",
|
111 |
+
"80": "bus",
|
112 |
+
"81": "towel",
|
113 |
+
"82": "light",
|
114 |
+
"83": "truck",
|
115 |
+
"84": "tower",
|
116 |
+
"85": "chandelier",
|
117 |
+
"86": "awning",
|
118 |
+
"87": "streetlight",
|
119 |
+
"88": "booth",
|
120 |
+
"89": "television receiver",
|
121 |
+
"90": "airplane",
|
122 |
+
"91": "dirt track",
|
123 |
+
"92": "apparel",
|
124 |
+
"93": "pole",
|
125 |
+
"94": "land",
|
126 |
+
"95": "bannister",
|
127 |
+
"96": "escalator",
|
128 |
+
"97": "ottoman",
|
129 |
+
"98": "bottle",
|
130 |
+
"99": "buffet",
|
131 |
+
"100": "poster",
|
132 |
+
"101": "stage",
|
133 |
+
"102": "van",
|
134 |
+
"103": "ship",
|
135 |
+
"104": "fountain",
|
136 |
+
"105": "conveyer belt",
|
137 |
+
"106": "canopy",
|
138 |
+
"107": "washer",
|
139 |
+
"108": "plaything",
|
140 |
+
"109": "swimming pool",
|
141 |
+
"110": "stool",
|
142 |
+
"111": "barrel",
|
143 |
+
"112": "basket",
|
144 |
+
"113": "waterfall",
|
145 |
+
"114": "tent",
|
146 |
+
"115": "bag",
|
147 |
+
"116": "minibike",
|
148 |
+
"117": "cradle",
|
149 |
+
"118": "oven",
|
150 |
+
"119": "ball",
|
151 |
+
"120": "food",
|
152 |
+
"121": "step",
|
153 |
+
"122": "tank",
|
154 |
+
"123": "trade name",
|
155 |
+
"124": "microwave",
|
156 |
+
"125": "pot",
|
157 |
+
"126": "animal",
|
158 |
+
"127": "bicycle",
|
159 |
+
"128": "lake",
|
160 |
+
"129": "dishwasher",
|
161 |
+
"130": "screen",
|
162 |
+
"131": "blanket",
|
163 |
+
"132": "sculpture",
|
164 |
+
"133": "hood",
|
165 |
+
"134": "sconce",
|
166 |
+
"135": "vase",
|
167 |
+
"136": "traffic light",
|
168 |
+
"137": "tray",
|
169 |
+
"138": "ashcan",
|
170 |
+
"139": "fan",
|
171 |
+
"140": "pier",
|
172 |
+
"141": "crt screen",
|
173 |
+
"142": "plate",
|
174 |
+
"143": "monitor",
|
175 |
+
"144": "bulletin board",
|
176 |
+
"145": "shower",
|
177 |
+
"146": "radiator",
|
178 |
+
"147": "glass",
|
179 |
+
"148": "clock",
|
180 |
+
"149": "flag"
|
181 |
+
},
|
182 |
+
"image_size": 224,
|
183 |
+
"initializer_range": 0.02,
|
184 |
+
"label2id": {
|
185 |
+
"airplane": 90,
|
186 |
+
"animal": 126,
|
187 |
+
"apparel": 92,
|
188 |
+
"arcade machine": 78,
|
189 |
+
"armchair": 30,
|
190 |
+
"ashcan": 138,
|
191 |
+
"awning": 86,
|
192 |
+
"bag": 115,
|
193 |
+
"ball": 119,
|
194 |
+
"bannister": 95,
|
195 |
+
"bar": 77,
|
196 |
+
"barrel": 111,
|
197 |
+
"base": 40,
|
198 |
+
"basket": 112,
|
199 |
+
"bathtub": 37,
|
200 |
+
"bed ": 7,
|
201 |
+
"bench": 69,
|
202 |
+
"bicycle": 127,
|
203 |
+
"blanket": 131,
|
204 |
+
"blind": 63,
|
205 |
+
"boat": 76,
|
206 |
+
"book": 67,
|
207 |
+
"bookcase": 62,
|
208 |
+
"booth": 88,
|
209 |
+
"bottle": 98,
|
210 |
+
"box": 41,
|
211 |
+
"bridge": 61,
|
212 |
+
"buffet": 99,
|
213 |
+
"building": 1,
|
214 |
+
"bulletin board": 144,
|
215 |
+
"bus": 80,
|
216 |
+
"cabinet": 10,
|
217 |
+
"canopy": 106,
|
218 |
+
"car": 20,
|
219 |
+
"case": 55,
|
220 |
+
"ceiling": 5,
|
221 |
+
"chair": 19,
|
222 |
+
"chandelier": 85,
|
223 |
+
"chest of drawers": 44,
|
224 |
+
"clock": 148,
|
225 |
+
"coffee table": 64,
|
226 |
+
"column": 42,
|
227 |
+
"computer": 74,
|
228 |
+
"conveyer belt": 105,
|
229 |
+
"counter": 45,
|
230 |
+
"countertop": 70,
|
231 |
+
"cradle": 117,
|
232 |
+
"crt screen": 141,
|
233 |
+
"curtain": 18,
|
234 |
+
"cushion": 39,
|
235 |
+
"desk": 33,
|
236 |
+
"dirt track": 91,
|
237 |
+
"dishwasher": 129,
|
238 |
+
"door": 14,
|
239 |
+
"earth": 13,
|
240 |
+
"escalator": 96,
|
241 |
+
"fan": 139,
|
242 |
+
"fence": 32,
|
243 |
+
"field": 29,
|
244 |
+
"fireplace": 49,
|
245 |
+
"flag": 149,
|
246 |
+
"floor": 3,
|
247 |
+
"flower": 66,
|
248 |
+
"food": 120,
|
249 |
+
"fountain": 104,
|
250 |
+
"glass": 147,
|
251 |
+
"grandstand": 51,
|
252 |
+
"grass": 9,
|
253 |
+
"hill": 68,
|
254 |
+
"hood": 133,
|
255 |
+
"house": 25,
|
256 |
+
"hovel": 79,
|
257 |
+
"kitchen island": 73,
|
258 |
+
"lake": 128,
|
259 |
+
"lamp": 36,
|
260 |
+
"land": 94,
|
261 |
+
"light": 82,
|
262 |
+
"microwave": 124,
|
263 |
+
"minibike": 116,
|
264 |
+
"mirror": 27,
|
265 |
+
"monitor": 143,
|
266 |
+
"mountain": 16,
|
267 |
+
"ottoman": 97,
|
268 |
+
"oven": 118,
|
269 |
+
"painting": 22,
|
270 |
+
"palm": 72,
|
271 |
+
"path": 52,
|
272 |
+
"person": 12,
|
273 |
+
"pier": 140,
|
274 |
+
"pillow": 57,
|
275 |
+
"plant": 17,
|
276 |
+
"plate": 142,
|
277 |
+
"plaything": 108,
|
278 |
+
"pole": 93,
|
279 |
+
"pool table": 56,
|
280 |
+
"poster": 100,
|
281 |
+
"pot": 125,
|
282 |
+
"radiator": 146,
|
283 |
+
"railing": 38,
|
284 |
+
"refrigerator": 50,
|
285 |
+
"river": 60,
|
286 |
+
"road": 6,
|
287 |
+
"rock": 34,
|
288 |
+
"rug": 28,
|
289 |
+
"runway": 54,
|
290 |
+
"sand": 46,
|
291 |
+
"sconce": 134,
|
292 |
+
"screen": 130,
|
293 |
+
"screen door": 58,
|
294 |
+
"sculpture": 132,
|
295 |
+
"sea": 26,
|
296 |
+
"seat": 31,
|
297 |
+
"shelf": 24,
|
298 |
+
"ship": 103,
|
299 |
+
"shower": 145,
|
300 |
+
"sidewalk": 11,
|
301 |
+
"signboard": 43,
|
302 |
+
"sink": 47,
|
303 |
+
"sky": 2,
|
304 |
+
"skyscraper": 48,
|
305 |
+
"sofa": 23,
|
306 |
+
"stage": 101,
|
307 |
+
"stairs": 53,
|
308 |
+
"stairway": 59,
|
309 |
+
"step": 121,
|
310 |
+
"stool": 110,
|
311 |
+
"stove": 71,
|
312 |
+
"streetlight": 87,
|
313 |
+
"swimming pool": 109,
|
314 |
+
"swivel chair": 75,
|
315 |
+
"table": 15,
|
316 |
+
"tank": 122,
|
317 |
+
"television receiver": 89,
|
318 |
+
"tent": 114,
|
319 |
+
"toilet": 65,
|
320 |
+
"towel": 81,
|
321 |
+
"tower": 84,
|
322 |
+
"trade name": 123,
|
323 |
+
"traffic light": 136,
|
324 |
+
"tray": 137,
|
325 |
+
"tree": 4,
|
326 |
+
"truck": 83,
|
327 |
+
"van": 102,
|
328 |
+
"vase": 135,
|
329 |
+
"wall": 0,
|
330 |
+
"wardrobe": 35,
|
331 |
+
"washer": 107,
|
332 |
+
"water": 21,
|
333 |
+
"waterfall": 113,
|
334 |
+
"windowpane": 8
|
335 |
+
},
|
336 |
+
"layer_norm_eps": 1e-06,
|
337 |
+
"mlp_ratios": [
|
338 |
+
4,
|
339 |
+
4,
|
340 |
+
4,
|
341 |
+
4
|
342 |
+
],
|
343 |
+
"model_type": "segformer",
|
344 |
+
"num_attention_heads": [
|
345 |
+
1,
|
346 |
+
2,
|
347 |
+
5,
|
348 |
+
8
|
349 |
+
],
|
350 |
+
"num_channels": 3,
|
351 |
+
"num_encoder_blocks": 4,
|
352 |
+
"patch_sizes": [
|
353 |
+
7,
|
354 |
+
3,
|
355 |
+
3,
|
356 |
+
3
|
357 |
+
],
|
358 |
+
"reshape_last_stage": true,
|
359 |
+
"semantic_loss_ignore_index": 255,
|
360 |
+
"sr_ratios": [
|
361 |
+
8,
|
362 |
+
4,
|
363 |
+
2,
|
364 |
+
1
|
365 |
+
],
|
366 |
+
"strides": [
|
367 |
+
4,
|
368 |
+
2,
|
369 |
+
2,
|
370 |
+
2
|
371 |
+
],
|
372 |
+
"torch_dtype": "float32",
|
373 |
+
"transformers_version": "4.48.0"
|
374 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8641db1307fb84dff089c582f98c22270861ac949e0ef6ea917777e6ffd8c9f9
|
3 |
+
size 54889536
|
preprocessor_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_reduce_labels": false,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.485,
|
8 |
+
0.456,
|
9 |
+
0.406
|
10 |
+
],
|
11 |
+
"image_processor_type": "SegformerFeatureExtractor",
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 2,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"height": 512,
|
21 |
+
"width": 512
|
22 |
+
}
|
23 |
+
}
|
runs/Jan21_04-13-25_jupyter-demo07/events.out.tfevents.1737432877.jupyter-demo07.166.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f38a1076bfe58ec75755a2c139e0dde0d91a133f634b1eb9b471e6a1100ec2bb
|
3 |
+
size 102982
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a84831c175432db7ed032edd3d539ec0e9ef14182751d33c90e907fd8fc73413
|
3 |
+
size 5368
|