Kohei3 commited on
Commit
a20a9de
·
verified ·
1 Parent(s): 36d31f2

End of training

Browse files
README.md ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: nvidia/segformer-b1-finetuned-ade-512-512
5
+ tags:
6
+ - vision
7
+ - image-segmentation
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: my-fine-tuned-model
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # my-fine-tuned-model
18
+
19
+ This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the segments/sidewalk-semantic dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.8650
22
+ - Mean Iou: 0.1979
23
+ - Mean Accuracy: 0.2600
24
+ - Overall Accuracy: 0.7844
25
+ - Accuracy Unlabeled: nan
26
+ - Accuracy Flat-road: 0.7636
27
+ - Accuracy Flat-sidewalk: 0.9369
28
+ - Accuracy Flat-crosswalk: 0.6233
29
+ - Accuracy Flat-cyclinglane: 0.5039
30
+ - Accuracy Flat-parkingdriveway: 0.3350
31
+ - Accuracy Flat-railtrack: nan
32
+ - Accuracy Flat-curb: 0.3609
33
+ - Accuracy Human-person: 0.0041
34
+ - Accuracy Human-rider: 0.0
35
+ - Accuracy Vehicle-car: 0.9008
36
+ - Accuracy Vehicle-truck: 0.0
37
+ - Accuracy Vehicle-bus: 0.0
38
+ - Accuracy Vehicle-tramtrain: 0.0
39
+ - Accuracy Vehicle-motorcycle: 0.0
40
+ - Accuracy Vehicle-bicycle: 0.0005
41
+ - Accuracy Vehicle-caravan: 0.0
42
+ - Accuracy Vehicle-cartrailer: 0.0
43
+ - Accuracy Construction-building: 0.8702
44
+ - Accuracy Construction-door: 0.0
45
+ - Accuracy Construction-wall: 0.3334
46
+ - Accuracy Construction-fenceguardrail: 0.1194
47
+ - Accuracy Construction-bridge: 0.0
48
+ - Accuracy Construction-tunnel: 0.0
49
+ - Accuracy Construction-stairs: 0.0
50
+ - Accuracy Object-pole: 0.0637
51
+ - Accuracy Object-trafficsign: 0.0
52
+ - Accuracy Object-trafficlight: 0.0
53
+ - Accuracy Nature-vegetation: 0.9057
54
+ - Accuracy Nature-terrain: 0.8349
55
+ - Accuracy Sky: 0.9210
56
+ - Accuracy Void-ground: 0.0339
57
+ - Accuracy Void-dynamic: 0.0032
58
+ - Accuracy Void-static: 0.0657
59
+ - Accuracy Void-unclear: 0.0
60
+ - Iou Unlabeled: 0.0
61
+ - Iou Flat-road: 0.6053
62
+ - Iou Flat-sidewalk: 0.7972
63
+ - Iou Flat-crosswalk: 0.4947
64
+ - Iou Flat-cyclinglane: 0.4639
65
+ - Iou Flat-parkingdriveway: 0.2544
66
+ - Iou Flat-railtrack: 0.0
67
+ - Iou Flat-curb: 0.2330
68
+ - Iou Human-person: 0.0041
69
+ - Iou Human-rider: 0.0
70
+ - Iou Vehicle-car: 0.6748
71
+ - Iou Vehicle-truck: 0.0
72
+ - Iou Vehicle-bus: 0.0
73
+ - Iou Vehicle-tramtrain: 0.0
74
+ - Iou Vehicle-motorcycle: 0.0
75
+ - Iou Vehicle-bicycle: 0.0005
76
+ - Iou Vehicle-caravan: 0.0
77
+ - Iou Vehicle-cartrailer: 0.0
78
+ - Iou Construction-building: 0.6517
79
+ - Iou Construction-door: 0.0
80
+ - Iou Construction-wall: 0.2393
81
+ - Iou Construction-fenceguardrail: 0.0990
82
+ - Iou Construction-bridge: 0.0
83
+ - Iou Construction-tunnel: 0.0
84
+ - Iou Construction-stairs: 0.0
85
+ - Iou Object-pole: 0.0522
86
+ - Iou Object-trafficsign: 0.0
87
+ - Iou Object-trafficlight: 0.0
88
+ - Iou Nature-vegetation: 0.7891
89
+ - Iou Nature-terrain: 0.6367
90
+ - Iou Sky: 0.8417
91
+ - Iou Void-ground: 0.0306
92
+ - Iou Void-dynamic: 0.0031
93
+ - Iou Void-static: 0.0567
94
+ - Iou Void-unclear: 0.0
95
+
96
+ ## Model description
97
+
98
+ More information needed
99
+
100
+ ## Intended uses & limitations
101
+
102
+ More information needed
103
+
104
+ ## Training and evaluation data
105
+
106
+ More information needed
107
+
108
+ ## Training procedure
109
+
110
+ ### Training hyperparameters
111
+
112
+ The following hyperparameters were used during training:
113
+ - learning_rate: 6e-05
114
+ - train_batch_size: 8
115
+ - eval_batch_size: 8
116
+ - seed: 42
117
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
118
+ - lr_scheduler_type: linear
119
+ - num_epochs: 2
120
+
121
+ ### Training results
122
+
123
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
124
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
125
+ | 2.5085 | 0.2 | 20 | 2.7797 | 0.0732 | 0.1076 | 0.4652 | nan | 0.5841 | 0.7791 | 0.0055 | 0.2836 | 0.0034 | nan | 0.0 | 0.0 | 0.0 | 0.5620 | 0.0 | 0.0198 | 0.0 | 0.0004 | 0.0004 | 0.0 | 0.0535 | 0.0891 | 0.0012 | 0.0003 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3935 | 0.6589 | 0.1063 | 0.0 | 0.0081 | 0.0 | 0.0 | 0.0 | 0.3763 | 0.6424 | 0.0019 | 0.2150 | 0.0033 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2835 | 0.0 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 0.0 | 0.0000 | 0.0859 | 0.0011 | 0.0002 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3843 | 0.4577 | 0.1061 | 0.0 | 0.0024 | 0.0 | 0.0 |
126
+ | 2.4875 | 0.4 | 40 | 1.7587 | 0.1295 | 0.1722 | 0.6580 | nan | 0.7729 | 0.8313 | 0.0254 | 0.3069 | 0.0016 | nan | 0.0005 | 0.0 | 0.0 | 0.7856 | 0.0 | 0.0017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0044 | 0.6115 | 0.0009 | 0.0148 | 0.0122 | 0.0 | 0.0 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.8782 | 0.6807 | 0.7454 | 0.0 | 0.0067 | 0.0 | 0.0 | 0.0 | 0.4677 | 0.7337 | 0.0129 | 0.2895 | 0.0016 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.5336 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.4970 | 0.0009 | 0.0130 | 0.0114 | 0.0 | 0.0 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.7164 | 0.5249 | 0.7231 | 0.0 | 0.0030 | 0.0 | 0.0 |
127
+ | 1.4979 | 0.6 | 60 | 1.3253 | 0.1478 | 0.2057 | 0.6899 | nan | 0.8068 | 0.8066 | 0.1982 | 0.4657 | 0.2635 | nan | 0.0285 | 0.0 | 0.0 | 0.8709 | 0.0 | 0.0017 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.6424 | 0.0000 | 0.1611 | 0.0051 | 0.0 | 0.0 | 0.0 | 0.0138 | 0.0 | 0.0 | 0.8751 | 0.7601 | 0.8505 | 0.0261 | 0.0108 | 0.0001 | 0.0 | 0.0 | 0.4953 | 0.7315 | 0.1383 | 0.3556 | 0.1491 | 0.0 | 0.0266 | 0.0 | 0.0 | 0.4975 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.5333 | 0.0000 | 0.1061 | 0.0049 | 0.0 | 0.0 | 0.0 | 0.0122 | 0.0 | 0.0 | 0.7534 | 0.5484 | 0.7903 | 0.0243 | 0.0045 | 0.0001 | 0.0 |
128
+ | 1.2341 | 0.8 | 80 | 1.2097 | 0.1612 | 0.2131 | 0.7259 | nan | 0.5034 | 0.9552 | 0.5156 | 0.4170 | 0.1216 | nan | 0.1390 | 0.0 | 0.0003 | 0.8090 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8904 | 0.0 | 0.1239 | 0.0350 | 0.0 | 0.0 | 0.0 | 0.0102 | 0.0 | 0.0 | 0.8813 | 0.7535 | 0.8759 | 0.0 | 0.0013 | 0.0003 | 0.0 | 0.0 | 0.4375 | 0.7135 | 0.3661 | 0.3521 | 0.1009 | 0.0 | 0.1176 | 0.0 | 0.0000 | 0.6389 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5992 | 0.0 | 0.0962 | 0.0306 | 0.0 | 0.0 | 0.0 | 0.0092 | 0.0 | 0.0 | 0.7711 | 0.5926 | 0.8134 | 0.0 | 0.0011 | 0.0003 | 0.0 |
129
+ | 1.594 | 1.0 | 100 | 1.0384 | 0.1687 | 0.2260 | 0.7523 | nan | 0.8702 | 0.8883 | 0.3212 | 0.4611 | 0.1767 | nan | 0.1078 | 0.0 | 0.0013 | 0.8716 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0023 | 0.0 | 0.0 | 0.8338 | 0.0 | 0.2006 | 0.0366 | 0.0 | 0.0 | 0.0 | 0.0374 | 0.0 | 0.0 | 0.8996 | 0.8280 | 0.8915 | 0.0 | 0.0008 | 0.0306 | 0.0 | 0.0 | 0.5099 | 0.7920 | 0.2474 | 0.4321 | 0.1507 | 0.0 | 0.0913 | 0.0 | 0.0003 | 0.6235 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0020 | 0.0 | 0.0 | 0.6274 | 0.0 | 0.1603 | 0.0337 | 0.0 | 0.0 | 0.0 | 0.0300 | 0.0 | 0.0 | 0.7659 | 0.5944 | 0.8171 | 0.0 | 0.0008 | 0.0260 | 0.0 |
130
+ | 0.7624 | 1.2 | 120 | 0.9402 | 0.1852 | 0.2479 | 0.7620 | nan | 0.6183 | 0.9445 | 0.6022 | 0.5182 | 0.2131 | nan | 0.3901 | 0.0 | 0.0008 | 0.8980 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8681 | 0.0000 | 0.2897 | 0.1158 | 0.0 | 0.0 | 0.0 | 0.0470 | 0.0 | 0.0 | 0.8860 | 0.8323 | 0.9143 | 0.0032 | 0.0017 | 0.0376 | 0.0 | 0.0 | 0.5142 | 0.7737 | 0.4531 | 0.4391 | 0.1737 | 0.0 | 0.2176 | 0.0 | 0.0002 | 0.6419 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6411 | 0.0000 | 0.2041 | 0.0941 | 0.0 | 0.0 | 0.0 | 0.0376 | 0.0 | 0.0 | 0.7853 | 0.6371 | 0.8329 | 0.0029 | 0.0016 | 0.0328 | 0.0 |
131
+ | 1.1404 | 1.4 | 140 | 0.9037 | 0.1937 | 0.2559 | 0.7761 | nan | 0.7507 | 0.9337 | 0.6121 | 0.5261 | 0.2748 | nan | 0.2728 | 0.0007 | 0.0 | 0.8756 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.8461 | 0.0000 | 0.4180 | 0.1162 | 0.0 | 0.0 | 0.0 | 0.0773 | 0.0 | 0.0 | 0.9055 | 0.8279 | 0.9024 | 0.0404 | 0.0019 | 0.0623 | 0.0 | 0.0 | 0.5682 | 0.7933 | 0.4733 | 0.4630 | 0.2328 | 0.0 | 0.1898 | 0.0007 | 0.0 | 0.6841 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.6414 | 0.0000 | 0.2357 | 0.0930 | 0.0 | 0.0 | 0.0 | 0.0561 | 0.0 | 0.0 | 0.7862 | 0.6368 | 0.8350 | 0.0348 | 0.0018 | 0.0532 | 0.0 |
132
+ | 0.7949 | 1.6 | 160 | 0.8834 | 0.1959 | 0.2559 | 0.7833 | nan | 0.7455 | 0.9427 | 0.6186 | 0.5220 | 0.3557 | nan | 0.3018 | 0.0044 | 0.0 | 0.9011 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.8695 | 0.0 | 0.3135 | 0.1094 | 0.0 | 0.0 | 0.0 | 0.0602 | 0.0 | 0.0 | 0.9121 | 0.7871 | 0.9168 | 0.0254 | 0.0012 | 0.0554 | 0.0 | 0.0 | 0.5954 | 0.7952 | 0.4864 | 0.4753 | 0.2686 | 0.0 | 0.2131 | 0.0044 | 0.0 | 0.6642 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0011 | 0.0 | 0.0 | 0.6427 | 0.0 | 0.2290 | 0.0919 | 0.0 | 0.0 | 0.0 | 0.0486 | 0.0 | 0.0 | 0.7904 | 0.6367 | 0.8404 | 0.0234 | 0.0011 | 0.0493 | 0.0 |
133
+ | 1.1158 | 1.8 | 180 | 0.8739 | 0.1967 | 0.2579 | 0.7829 | nan | 0.7531 | 0.9429 | 0.6044 | 0.4876 | 0.3491 | nan | 0.3338 | 0.0041 | 0.0 | 0.8976 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.8643 | 0.0 | 0.3477 | 0.1201 | 0.0 | 0.0 | 0.0 | 0.0602 | 0.0 | 0.0 | 0.9064 | 0.8280 | 0.9161 | 0.0301 | 0.0027 | 0.0612 | 0.0 | 0.0 | 0.6023 | 0.7929 | 0.4754 | 0.4542 | 0.2581 | 0.0 | 0.2261 | 0.0041 | 0.0 | 0.6759 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.6505 | 0.0 | 0.2436 | 0.0991 | 0.0 | 0.0 | 0.0 | 0.0493 | 0.0 | 0.0 | 0.7883 | 0.6363 | 0.8424 | 0.0275 | 0.0026 | 0.0538 | 0.0 |
134
+ | 0.9007 | 2.0 | 200 | 0.8650 | 0.1979 | 0.2600 | 0.7844 | nan | 0.7636 | 0.9369 | 0.6233 | 0.5039 | 0.3350 | nan | 0.3609 | 0.0041 | 0.0 | 0.9008 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.8702 | 0.0 | 0.3334 | 0.1194 | 0.0 | 0.0 | 0.0 | 0.0637 | 0.0 | 0.0 | 0.9057 | 0.8349 | 0.9210 | 0.0339 | 0.0032 | 0.0657 | 0.0 | 0.0 | 0.6053 | 0.7972 | 0.4947 | 0.4639 | 0.2544 | 0.0 | 0.2330 | 0.0041 | 0.0 | 0.6748 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.6517 | 0.0 | 0.2393 | 0.0990 | 0.0 | 0.0 | 0.0 | 0.0522 | 0.0 | 0.0 | 0.7891 | 0.6367 | 0.8417 | 0.0306 | 0.0031 | 0.0567 | 0.0 |
135
+
136
+
137
+ ### Framework versions
138
+
139
+ - Transformers 4.48.0
140
+ - Pytorch 2.1.1+cu118
141
+ - Datasets 3.2.0
142
+ - Tokenizers 0.21.0
config.json ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/segformer-b1-finetuned-ade-512-512",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "wall",
32
+ "1": "building",
33
+ "2": "sky",
34
+ "3": "floor",
35
+ "4": "tree",
36
+ "5": "ceiling",
37
+ "6": "road",
38
+ "7": "bed ",
39
+ "8": "windowpane",
40
+ "9": "grass",
41
+ "10": "cabinet",
42
+ "11": "sidewalk",
43
+ "12": "person",
44
+ "13": "earth",
45
+ "14": "door",
46
+ "15": "table",
47
+ "16": "mountain",
48
+ "17": "plant",
49
+ "18": "curtain",
50
+ "19": "chair",
51
+ "20": "car",
52
+ "21": "water",
53
+ "22": "painting",
54
+ "23": "sofa",
55
+ "24": "shelf",
56
+ "25": "house",
57
+ "26": "sea",
58
+ "27": "mirror",
59
+ "28": "rug",
60
+ "29": "field",
61
+ "30": "armchair",
62
+ "31": "seat",
63
+ "32": "fence",
64
+ "33": "desk",
65
+ "34": "rock",
66
+ "35": "wardrobe",
67
+ "36": "lamp",
68
+ "37": "bathtub",
69
+ "38": "railing",
70
+ "39": "cushion",
71
+ "40": "base",
72
+ "41": "box",
73
+ "42": "column",
74
+ "43": "signboard",
75
+ "44": "chest of drawers",
76
+ "45": "counter",
77
+ "46": "sand",
78
+ "47": "sink",
79
+ "48": "skyscraper",
80
+ "49": "fireplace",
81
+ "50": "refrigerator",
82
+ "51": "grandstand",
83
+ "52": "path",
84
+ "53": "stairs",
85
+ "54": "runway",
86
+ "55": "case",
87
+ "56": "pool table",
88
+ "57": "pillow",
89
+ "58": "screen door",
90
+ "59": "stairway",
91
+ "60": "river",
92
+ "61": "bridge",
93
+ "62": "bookcase",
94
+ "63": "blind",
95
+ "64": "coffee table",
96
+ "65": "toilet",
97
+ "66": "flower",
98
+ "67": "book",
99
+ "68": "hill",
100
+ "69": "bench",
101
+ "70": "countertop",
102
+ "71": "stove",
103
+ "72": "palm",
104
+ "73": "kitchen island",
105
+ "74": "computer",
106
+ "75": "swivel chair",
107
+ "76": "boat",
108
+ "77": "bar",
109
+ "78": "arcade machine",
110
+ "79": "hovel",
111
+ "80": "bus",
112
+ "81": "towel",
113
+ "82": "light",
114
+ "83": "truck",
115
+ "84": "tower",
116
+ "85": "chandelier",
117
+ "86": "awning",
118
+ "87": "streetlight",
119
+ "88": "booth",
120
+ "89": "television receiver",
121
+ "90": "airplane",
122
+ "91": "dirt track",
123
+ "92": "apparel",
124
+ "93": "pole",
125
+ "94": "land",
126
+ "95": "bannister",
127
+ "96": "escalator",
128
+ "97": "ottoman",
129
+ "98": "bottle",
130
+ "99": "buffet",
131
+ "100": "poster",
132
+ "101": "stage",
133
+ "102": "van",
134
+ "103": "ship",
135
+ "104": "fountain",
136
+ "105": "conveyer belt",
137
+ "106": "canopy",
138
+ "107": "washer",
139
+ "108": "plaything",
140
+ "109": "swimming pool",
141
+ "110": "stool",
142
+ "111": "barrel",
143
+ "112": "basket",
144
+ "113": "waterfall",
145
+ "114": "tent",
146
+ "115": "bag",
147
+ "116": "minibike",
148
+ "117": "cradle",
149
+ "118": "oven",
150
+ "119": "ball",
151
+ "120": "food",
152
+ "121": "step",
153
+ "122": "tank",
154
+ "123": "trade name",
155
+ "124": "microwave",
156
+ "125": "pot",
157
+ "126": "animal",
158
+ "127": "bicycle",
159
+ "128": "lake",
160
+ "129": "dishwasher",
161
+ "130": "screen",
162
+ "131": "blanket",
163
+ "132": "sculpture",
164
+ "133": "hood",
165
+ "134": "sconce",
166
+ "135": "vase",
167
+ "136": "traffic light",
168
+ "137": "tray",
169
+ "138": "ashcan",
170
+ "139": "fan",
171
+ "140": "pier",
172
+ "141": "crt screen",
173
+ "142": "plate",
174
+ "143": "monitor",
175
+ "144": "bulletin board",
176
+ "145": "shower",
177
+ "146": "radiator",
178
+ "147": "glass",
179
+ "148": "clock",
180
+ "149": "flag"
181
+ },
182
+ "image_size": 224,
183
+ "initializer_range": 0.02,
184
+ "label2id": {
185
+ "airplane": 90,
186
+ "animal": 126,
187
+ "apparel": 92,
188
+ "arcade machine": 78,
189
+ "armchair": 30,
190
+ "ashcan": 138,
191
+ "awning": 86,
192
+ "bag": 115,
193
+ "ball": 119,
194
+ "bannister": 95,
195
+ "bar": 77,
196
+ "barrel": 111,
197
+ "base": 40,
198
+ "basket": 112,
199
+ "bathtub": 37,
200
+ "bed ": 7,
201
+ "bench": 69,
202
+ "bicycle": 127,
203
+ "blanket": 131,
204
+ "blind": 63,
205
+ "boat": 76,
206
+ "book": 67,
207
+ "bookcase": 62,
208
+ "booth": 88,
209
+ "bottle": 98,
210
+ "box": 41,
211
+ "bridge": 61,
212
+ "buffet": 99,
213
+ "building": 1,
214
+ "bulletin board": 144,
215
+ "bus": 80,
216
+ "cabinet": 10,
217
+ "canopy": 106,
218
+ "car": 20,
219
+ "case": 55,
220
+ "ceiling": 5,
221
+ "chair": 19,
222
+ "chandelier": 85,
223
+ "chest of drawers": 44,
224
+ "clock": 148,
225
+ "coffee table": 64,
226
+ "column": 42,
227
+ "computer": 74,
228
+ "conveyer belt": 105,
229
+ "counter": 45,
230
+ "countertop": 70,
231
+ "cradle": 117,
232
+ "crt screen": 141,
233
+ "curtain": 18,
234
+ "cushion": 39,
235
+ "desk": 33,
236
+ "dirt track": 91,
237
+ "dishwasher": 129,
238
+ "door": 14,
239
+ "earth": 13,
240
+ "escalator": 96,
241
+ "fan": 139,
242
+ "fence": 32,
243
+ "field": 29,
244
+ "fireplace": 49,
245
+ "flag": 149,
246
+ "floor": 3,
247
+ "flower": 66,
248
+ "food": 120,
249
+ "fountain": 104,
250
+ "glass": 147,
251
+ "grandstand": 51,
252
+ "grass": 9,
253
+ "hill": 68,
254
+ "hood": 133,
255
+ "house": 25,
256
+ "hovel": 79,
257
+ "kitchen island": 73,
258
+ "lake": 128,
259
+ "lamp": 36,
260
+ "land": 94,
261
+ "light": 82,
262
+ "microwave": 124,
263
+ "minibike": 116,
264
+ "mirror": 27,
265
+ "monitor": 143,
266
+ "mountain": 16,
267
+ "ottoman": 97,
268
+ "oven": 118,
269
+ "painting": 22,
270
+ "palm": 72,
271
+ "path": 52,
272
+ "person": 12,
273
+ "pier": 140,
274
+ "pillow": 57,
275
+ "plant": 17,
276
+ "plate": 142,
277
+ "plaything": 108,
278
+ "pole": 93,
279
+ "pool table": 56,
280
+ "poster": 100,
281
+ "pot": 125,
282
+ "radiator": 146,
283
+ "railing": 38,
284
+ "refrigerator": 50,
285
+ "river": 60,
286
+ "road": 6,
287
+ "rock": 34,
288
+ "rug": 28,
289
+ "runway": 54,
290
+ "sand": 46,
291
+ "sconce": 134,
292
+ "screen": 130,
293
+ "screen door": 58,
294
+ "sculpture": 132,
295
+ "sea": 26,
296
+ "seat": 31,
297
+ "shelf": 24,
298
+ "ship": 103,
299
+ "shower": 145,
300
+ "sidewalk": 11,
301
+ "signboard": 43,
302
+ "sink": 47,
303
+ "sky": 2,
304
+ "skyscraper": 48,
305
+ "sofa": 23,
306
+ "stage": 101,
307
+ "stairs": 53,
308
+ "stairway": 59,
309
+ "step": 121,
310
+ "stool": 110,
311
+ "stove": 71,
312
+ "streetlight": 87,
313
+ "swimming pool": 109,
314
+ "swivel chair": 75,
315
+ "table": 15,
316
+ "tank": 122,
317
+ "television receiver": 89,
318
+ "tent": 114,
319
+ "toilet": 65,
320
+ "towel": 81,
321
+ "tower": 84,
322
+ "trade name": 123,
323
+ "traffic light": 136,
324
+ "tray": 137,
325
+ "tree": 4,
326
+ "truck": 83,
327
+ "van": 102,
328
+ "vase": 135,
329
+ "wall": 0,
330
+ "wardrobe": 35,
331
+ "washer": 107,
332
+ "water": 21,
333
+ "waterfall": 113,
334
+ "windowpane": 8
335
+ },
336
+ "layer_norm_eps": 1e-06,
337
+ "mlp_ratios": [
338
+ 4,
339
+ 4,
340
+ 4,
341
+ 4
342
+ ],
343
+ "model_type": "segformer",
344
+ "num_attention_heads": [
345
+ 1,
346
+ 2,
347
+ 5,
348
+ 8
349
+ ],
350
+ "num_channels": 3,
351
+ "num_encoder_blocks": 4,
352
+ "patch_sizes": [
353
+ 7,
354
+ 3,
355
+ 3,
356
+ 3
357
+ ],
358
+ "reshape_last_stage": true,
359
+ "semantic_loss_ignore_index": 255,
360
+ "sr_ratios": [
361
+ 8,
362
+ 4,
363
+ 2,
364
+ 1
365
+ ],
366
+ "strides": [
367
+ 4,
368
+ 2,
369
+ 2,
370
+ 2
371
+ ],
372
+ "torch_dtype": "float32",
373
+ "transformers_version": "4.48.0"
374
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8641db1307fb84dff089c582f98c22270861ac949e0ef6ea917777e6ffd8c9f9
3
+ size 54889536
preprocessor_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_reduce_labels": false,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.485,
8
+ 0.456,
9
+ 0.406
10
+ ],
11
+ "image_processor_type": "SegformerFeatureExtractor",
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 2,
18
+ "rescale_factor": 0.00392156862745098,
19
+ "size": {
20
+ "height": 512,
21
+ "width": 512
22
+ }
23
+ }
runs/Jan21_04-13-25_jupyter-demo07/events.out.tfevents.1737432877.jupyter-demo07.166.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f38a1076bfe58ec75755a2c139e0dde0d91a133f634b1eb9b471e6a1100ec2bb
3
+ size 102982
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a84831c175432db7ed032edd3d539ec0e9ef14182751d33c90e907fd8fc73413
3
+ size 5368