Update README.md
Browse files
README.md
CHANGED
@@ -1,16 +1,25 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
-
|
9 |
-
|
10 |
|
11 |
|
12 |
## Model Details
|
13 |
|
|
|
|
|
|
|
14 |
### Model Description
|
15 |
|
16 |
<!-- Provide a longer summary of what this model is. -->
|
@@ -40,7 +49,124 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
40 |
### Direct Use
|
41 |
|
42 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
[More Information Needed]
|
45 |
|
46 |
### Downstream Use [optional]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- LAM
|
5 |
+
- tooluse
|
6 |
+
- function calling
|
7 |
+
license: mit
|
8 |
+
datasets:
|
9 |
+
- Salesforce/xlam-function-calling-60k
|
10 |
---
|
11 |
|
12 |
# Model Card for Model ID
|
13 |
|
14 |
+
ActionGemma is a LargeActionModel inspired from Salesforce/xLAM and trained on it's dataset. this is a combination of multi-lingual capabilities of Gemma with Function calling capabilites from xLAM dataset
|
15 |
+
Now you have a Action /function calling Model for all the languages supported by gemma2
|
16 |
|
17 |
|
18 |
## Model Details
|
19 |
|
20 |
+
Base Model : Gemma2-9B-it
|
21 |
+
Fine-Tuned on : xLAM dataset
|
22 |
+
|
23 |
### Model Description
|
24 |
|
25 |
<!-- Provide a longer summary of what this model is. -->
|
|
|
49 |
### Direct Use
|
50 |
|
51 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
52 |
+
tokenizer in built have a chat template as follows
|
53 |
+
```
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained("KishoreK/ActionGemma-9B")
|
55 |
+
tokenizer.chat_template = """{{ bos_token }}
|
56 |
+
{% for message in messages %}
|
57 |
+
{% if message['role'] == 'tools' %}
|
58 |
+
{{ '<unused0>\n' + message['content'] + '<unused1>\n'}}
|
59 |
+
{% else %}
|
60 |
+
{{ '<start_of_turn>' + message['role'] + '\n' + message['content'] | trim + '<end_of_turn>\n' }}
|
61 |
+
{% endif %}
|
62 |
+
{% endfor %}
|
63 |
+
|
64 |
+
{% if add_generation_prompt %}
|
65 |
+
{{ '<start_of_turn>assistant\n' }}
|
66 |
+
{% endif %}
|
67 |
+
"""
|
68 |
+
```
|
69 |
+
you can utilise this or modify based on this syntax.
|
70 |
+
|
71 |
+
```
|
72 |
+
task_instruction = """
|
73 |
+
You are an expert in composing functions. You are given a question and a set of possible functions.
|
74 |
+
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
|
75 |
+
If none of the functions can be used, point it out and refuse to answer.
|
76 |
+
If the given question lacks the parameters required by the function, also point it out.
|
77 |
+
""".strip()
|
78 |
+
|
79 |
+
get_weather_api = {
|
80 |
+
"name": "get_weather",
|
81 |
+
"description": "Get the current weather for a location",
|
82 |
+
"parameters": {
|
83 |
+
"type": "object",
|
84 |
+
"properties": {
|
85 |
+
"location": {
|
86 |
+
"type": "string",
|
87 |
+
"description": "The city and state, e.g. San Francisco, New York"
|
88 |
+
},
|
89 |
+
"unit": {
|
90 |
+
"type": "string",
|
91 |
+
"enum": ["celsius", "fahrenheit"],
|
92 |
+
"description": "The unit of temperature to return"
|
93 |
+
}
|
94 |
+
},
|
95 |
+
"required": ["location"]
|
96 |
+
}
|
97 |
+
}
|
98 |
+
|
99 |
+
search_api = {
|
100 |
+
"name": "search",
|
101 |
+
"description": "Search for information on the internet",
|
102 |
+
"parameters": {
|
103 |
+
"type": "object",
|
104 |
+
"properties": {
|
105 |
+
"query": {
|
106 |
+
"type": "string",
|
107 |
+
"description": "The search query, e.g. 'latest news on AI'"
|
108 |
+
}
|
109 |
+
},
|
110 |
+
"required": ["query"]
|
111 |
+
}
|
112 |
+
}
|
113 |
+
|
114 |
+
openai_format_tools = [get_weather_api, search_api]
|
115 |
+
|
116 |
+
def convert_to_xlam_tool(tools):
|
117 |
+
''''''
|
118 |
+
if isinstance(tools, dict):
|
119 |
+
return {
|
120 |
+
"name": tools["name"],
|
121 |
+
"description": tools["description"],
|
122 |
+
"parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()}
|
123 |
+
}
|
124 |
+
elif isinstance(tools, list):
|
125 |
+
return [convert_to_xlam_tool(tool) for tool in tools]
|
126 |
+
else:
|
127 |
+
return tools
|
128 |
+
|
129 |
+
user_query = "अमेरिका के राष्ट्रपति कौन है?"
|
130 |
+
tools = openai_format_tools
|
131 |
+
messages = [{
|
132 |
+
"role" : "system",
|
133 |
+
"content" : task_instruction
|
134 |
+
},{
|
135 |
+
"role" : "user",
|
136 |
+
"content" : user_query
|
137 |
+
},{
|
138 |
+
"role": "tools",
|
139 |
+
"content": json.dumps(convert_to_xlam_tool(tools))
|
140 |
+
}]
|
141 |
+
|
142 |
+
print(tokenizer.decode(tokenizer.apply_chat_template(messages, add_generation_prompt=True)))
|
143 |
+
```
|
144 |
+
|
145 |
+
sample response from applied chat template
|
146 |
+
```
|
147 |
+
<bos>
|
148 |
+
<start_of_turn>system
|
149 |
+
You are an expert in composing functions. You are given a question and a set of possible functions.
|
150 |
+
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
|
151 |
+
If none of the functions can be used, point it out and refuse to answer.
|
152 |
+
If the given question lacks the parameters required by the function, also point it out.<end_of_turn>
|
153 |
+
|
154 |
+
<start_of_turn>user
|
155 |
+
अमेरिका के राष्ट्रपति कौन है?<end_of_turn>
|
156 |
+
|
157 |
+
<unused0>
|
158 |
+
[{"name": "get_weather", "description": "Get the current weather for a location", "parameters": {"location": {"type": "string", "description": "The city and state, e.g. San Francisco, New York"}, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"], "description": "The unit of temperature to return"}}}, {"name": "search", "description": "Search for information on the internet", "parameters": {"query": {"type": "string", "description": "The search query, e.g. 'latest news on AI'"}}}]<unused1>
|
159 |
+
|
160 |
+
|
161 |
+
<start_of_turn>assistant
|
162 |
+
```
|
163 |
+
invoking model with this prompt
|
164 |
+
```
|
165 |
+
model = AutoModelForCausalLM.from_pretrained("KishoreK/ActionGemma-9B", use_cache=True)
|
166 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
167 |
+
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
168 |
+
```
|
169 |
+
chat template, inference are referenced from xLAM documentation.
|
170 |
[More Information Needed]
|
171 |
|
172 |
### Downstream Use [optional]
|