luna_lender_v1 / config.json
KhariotnovKK's picture
number of iterations increased to 1mln
e2fa443
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d52c10e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d52c10ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d52c10f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d52b9a050>", "_build": "<function ActorCriticPolicy._build at 0x7f9d52b9a0e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9d52b9a170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d52b9a200>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9d52b9a290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d52b9a320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d52b9a3b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d52b9a440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9d52bea480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652638300.7541466, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAABwDz2KCm6z5qPtxbcjbIb1HA7I+6qNgAAgD8AAIA/DdOLvXxHrz8floa+J9Kivryq2b1L33O9AAAAAAAAAABzrIC+6jUKvdqhibxJTfi6QhRwPmH7uTsAAIA/AACAP81qKTzhVJy6k9ZFOEaWOjMCxk04nkdktwAAgD8AAIA/7bwyPva/7D5Ddwm/42xLvpQuiDzOa9C+AAAAAAAAAAAtzxK+coOTPz5U6L3Ra7e+hdShvfX9Zj0AAAAAAAAAAE3dIT2tVxg/7oULviMccr7nhvO82hRjvQAAAAAAAAAAZkQGvvMCOz8OJPY9MGpqvn89uryvzoC9AAAAAAAAAABmbs+7UmrEuwMw1Lsvhbw8CpgYPeaZnb0AAIA/AACAP5qpXzxuYZ0+4q0yPTJPgb4Ig6k8oE8ivQAAAAAAAAAAmtPtPNRbmz8WOko8hh6pvnkrBD2umTC9AAAAAAAAAADzaAE+4P8OPz/9kb5vYp++GBOBvTqVzL0AAAAAAAAAAACq6Tyb7/E9qlTlvTslZ75wy0+8MIPlvAAAAAAAAAAAM6D2PdN/0z7moqy+Cl6fvnYUxL1F5dk8AAAAAAAAAAAzD7E99swnugsMdTGfMEiwWVCNu2ucZjIAAIA/AACAP8a6HL4x7c0+N1WzPSJpTL4r/cm7vvEevgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOUTcnAqHckCUhpRSlIwBbJRL7owBdJRHQJtk8Y+B6KN1fZQoaAZoCWgPQwhQGJRptKpwQJSGlFKUaBVNGgFoFkdAm2T98ma6SXV9lChoBmgJaA9DCFG7XwX4mGtAlIaUUpRoFU0eAWgWR0CbZTY77sOYdX2UKGgGaAloD0MIPDJWm3+5b0CUhpRSlGgVTVMBaBZHQJtlY6EJ0GN1fZQoaAZoCWgPQwip3hrYqlpwQJSGlFKUaBVNRwFoFkdAm2YPapPykXV9lChoBmgJaA9DCPrVHCCYlm5AlIaUUpRoFU0iAWgWR0CbZoSsKb8WdX2UKGgGaAloD0MIS1mGOFZOb0CUhpRSlGgVTR0BaBZHQJtmvspobn51fZQoaAZoCWgPQwj5hy09mkpvQJSGlFKUaBVNLwFoFkdAm2dwiNbTt3V9lChoBmgJaA9DCJ5flKC/IXFAlIaUUpRoFU1AAWgWR0CbZ9zeGfwrdX2UKGgGaAloD0MIldV0PdFJakCUhpRSlGgVTT0BaBZHQJtpKwaBI4F1fZQoaAZoCWgPQwjNkZVfBqRvQJSGlFKUaBVNxQFoFkdAm2se/gzguXV9lChoBmgJaA9DCEOrkzPUTHFAlIaUUpRoFU1FAWgWR0CbbMxc3VCpdX2UKGgGaAloD0MIS3ZsBOIVbUCUhpRSlGgVTSsBaBZHQJtth7eEZix1fZQoaAZoCWgPQwj2Q2yw8PdvQJSGlFKUaBVNOQFoFkdAm24Le2uxKXV9lChoBmgJaA9DCPda0HvjbXFAlIaUUpRoFU1KAWgWR0CbbmISDh99dX2UKGgGaAloD0MI4/p3feYKckCUhpRSlGgVTRIBaBZHQJtufGLk0aZ1fZQoaAZoCWgPQwgFxCRcSMdxQJSGlFKUaBVNHQFoFkdAm29R1LamGnV9lChoBmgJaA9DCP+xEB2C83FAlIaUUpRoFU0lAWgWR0Cbb26wt8NQdX2UKGgGaAloD0MI3enOE8/GcUCUhpRSlGgVTRgBaBZHQJtwrUNKAax1fZQoaAZoCWgPQwjLoUW2s0lxQJSGlFKUaBVNJwFoFkdAm3Dyr92ovXV9lChoBmgJaA9DCHBBtizfTG9AlIaUUpRoFU1QAWgWR0Cbcd1gpjMFdX2UKGgGaAloD0MIPBHEeTitbUCUhpRSlGgVTSUBaBZHQJtyXu4PPLR1fZQoaAZoCWgPQwgWE5uP68NxQJSGlFKUaBVNOAFoFkdAm3KI42jwhHV9lChoBmgJaA9DCFU01v5OMHBAlIaUUpRoFU1TAWgWR0CbdV9IwudxdX2UKGgGaAloD0MI5C8t6tNrcUCUhpRSlGgVTTIBaBZHQJt2SlANXo11fZQoaAZoCWgPQwhszsEzoZdyQJSGlFKUaBVNBQFoFkdAm3dsMd92HXV9lChoBmgJaA9DCE4rhUCu/GxAlIaUUpRoFU0zAWgWR0CbeBDzRQaadX2UKGgGaAloD0MIJ/kRv+JsbkCUhpRSlGgVTRcBaBZHQJt4k7Omixp1fZQoaAZoCWgPQwgtlbcjXG5xQJSGlFKUaBVNPQFoFkdAm3kwm7aqTHV9lChoBmgJaA9DCLMJMCx/REJAlIaUUpRoFUvraBZHQJt5mqR2bG51fZQoaAZoCWgPQwhLWYY41mVuQJSGlFKUaBVNQgFoFkdAm3tp8OTaCnV9lChoBmgJaA9DCLVug9pvYXBAlIaUUpRoFU1eAWgWR0Cbe37sv7FbdX2UKGgGaAloD0MIgJvFiwWyb0CUhpRSlGgVTUsBaBZHQJt7pRMvh611fZQoaAZoCWgPQwhnDkktlBhyQJSGlFKUaBVNEgFoFkdAm3yxvJiiI3V9lChoBmgJaA9DCNdnzvrULnBAlIaUUpRoFU1GAWgWR0CbfM38n/kvdX2UKGgGaAloD0MInx7bMuD6cUCUhpRSlGgVTScBaBZHQJt859NN8E51fZQoaAZoCWgPQwhpVrYP+RxyQJSGlFKUaBVNQAFoFkdAm35KgM+eOHV9lChoBmgJaA9DCPSLEvQX02xAlIaUUpRoFU3HA2gWR0Cbf1JCSidrdX2UKGgGaAloD0MIMzLIXcQDckCUhpRSlGgVTSEBaBZHQJt/+5QP7N11fZQoaAZoCWgPQwiILxNFCM5yQJSGlFKUaBVNIwFoFkdAm4DqPwNLDnV9lChoBmgJaA9DCABywoTRi21AlIaUUpRoFU0lAWgWR0CbgptxdY4idX2UKGgGaAloD0MIsTbGTjjBcECUhpRSlGgVTREBaBZHQJuC7LcKw6h1fZQoaAZoCWgPQwhOXmQCPlByQJSGlFKUaBVNIQFoFkdAm4LtWluWKXV9lChoBmgJaA9DCHwnZr1Y5nBAlIaUUpRoFU1DAWgWR0Cbgy2NedCmdX2UKGgGaAloD0MIFVYqqOj+cUCUhpRSlGgVTT4BaBZHQJuFCL876pJ1fZQoaAZoCWgPQwiIvVDAtvNyQJSGlFKUaBVNIgFoFkdAm4Wzm0VrRHV9lChoBmgJaA9DCGSw4lRrQUFAlIaUUpRoFU0cAWgWR0Cbhty/sVtXdX2UKGgGaAloD0MImngHeFLfcUCUhpRSlGgVTUYBaBZHQJuHV8c+7lJ1fZQoaAZoCWgPQwi/mC1ZFRJtQJSGlFKUaBVNVQFoFkdAm4fBNZeRgnV9lChoBmgJaA9DCCOFsvB1mmxAlIaUUpRoFU00AWgWR0CbiAC6pYLcdX2UKGgGaAloD0MI2EY82c2bY0CUhpRSlGgVTegDaBZHQJuJDi5uqFR1fZQoaAZoCWgPQwiSByKLNNhvQJSGlFKUaBVNdQFoFkdAm505g9eQdXV9lChoBmgJaA9DCH3KMVncJXBAlIaUUpRoFU1HAWgWR0CbnUzWPLgXdX2UKGgGaAloD0MIMuNtpdeXb0CUhpRSlGgVTSMBaBZHQJudw84gieN1fZQoaAZoCWgPQwjOjlTf+ZpvQJSGlFKUaBVNPgFoFkdAm538J2MbWHV9lChoBmgJaA9DCNeJy/EKem9AlIaUUpRoFU1RAWgWR0CboB2Qnx8VdX2UKGgGaAloD0MIRkHw+LbGcUCUhpRSlGgVTTkBaBZHQJuhQraufVZ1fZQoaAZoCWgPQwgJ+3YSEW1wQJSGlFKUaBVNRAFoFkdAm6FgD/2kBXV9lChoBmgJaA9DCBps6jwqcXBAlIaUUpRoFU0MAWgWR0Cboalf7aZhdX2UKGgGaAloD0MIKXY0DvVrbUCUhpRSlGgVTTkBaBZHQJuj/uF6Avt1fZQoaAZoCWgPQwiUMT7M3g5vQJSGlFKUaBVNoAFoFkdAm6VPE87p3XV9lChoBmgJaA9DCFVQUfUr1W9AlIaUUpRoFU1RAWgWR0Cbplc3EQ5FdX2UKGgGaAloD0MI+YVXknwscUCUhpRSlGgVTTwBaBZHQJumbaM72ct1fZQoaAZoCWgPQwjAd5s3zrNwQJSGlFKUaBVNOgFoFkdAm6adX5nDi3V9lChoBmgJaA9DCEVj7e9sVnFAlIaUUpRoFU1LAWgWR0CbppfShJyydX2UKGgGaAloD0MIDVLwFHKJb0CUhpRSlGgVTSYBaBZHQJum7jm0VrR1fZQoaAZoCWgPQwjNdK+T+shvQJSGlFKUaBVNJwFoFkdAm6gdpAUtZnV9lChoBmgJaA9DCN2ZCYZzaW1AlIaUUpRoFU1FAWgWR0CbqfRvm5lOdX2UKGgGaAloD0MIGJgVivRWckCUhpRSlGgVTVUBaBZHQJuqQmjTKDF1fZQoaAZoCWgPQwgpQX+hx9luQJSGlFKUaBVNHAFoFkdAm6rDeoDPnnV9lChoBmgJaA9DCKMFaFtNfnBAlIaUUpRoFU12AWgWR0CbqspztCzDdX2UKGgGaAloD0MINuohGt3AbkCUhpRSlGgVTSkBaBZHQJusKizsyBV1fZQoaAZoCWgPQwiADB07qN9uQJSGlFKUaBVNMwFoFkdAm6y9CiRGMHV9lChoBmgJaA9DCNUEUfeBE3JAlIaUUpRoFU1fAWgWR0CbrdVzIV/MdX2UKGgGaAloD0MI7Zv7qweDcECUhpRSlGgVTTcBaBZHQJuu+TvAoG91fZQoaAZoCWgPQwisHcU5KntyQJSGlFKUaBVNKQFoFkdAm7CBaHKwIXV9lChoBmgJaA9DCDBinwAKeHFAlIaUUpRoFU0nAWgWR0CbsK8q4H5adX2UKGgGaAloD0MIOSUgJqE4cUCUhpRSlGgVTUcBaBZHQJuwxEYwZfl1fZQoaAZoCWgPQwiEuHL2TuJtQJSGlFKUaBVNNwFoFkdAm7EfczqKQHV9lChoBmgJaA9DCBYW3A94xW9AlIaUUpRoFU1DAWgWR0CbshYlpoK2dX2UKGgGaAloD0MIG5sdqb7ZSkCUhpRSlGgVS+RoFkdAm7In2ZiNKnV9lChoBmgJaA9DCLGGi9xTlmxAlIaUUpRoFU1VAWgWR0CbsmYtg8bJdX2UKGgGaAloD0MIAd9t3vgrcECUhpRSlGgVTV4BaBZHQJu0KwUxmCl1fZQoaAZoCWgPQwh6GFqdHGBuQJSGlFKUaBVNNwFoFkdAm7SgbADaG3V9lChoBmgJaA9DCG/0MR/QCHBAlIaUUpRoFU0yAWgWR0CbtU2kzoECdX2UKGgGaAloD0MIw9UBEHcob0CUhpRSlGgVTUMBaBZHQJu12mNzbN91fZQoaAZoCWgPQwjP9BJjma9xQJSGlFKUaBVNHAFoFkdAm7YOH31zyXV9lChoBmgJaA9DCERRoE9kuW9AlIaUUpRoFU0wAWgWR0Cbtyg7o0Q9dX2UKGgGaAloD0MINZpcjIHYb0CUhpRSlGgVTSkBaBZHQJu3+h37k4p1fZQoaAZoCWgPQwiUha+vdVVjQJSGlFKUaBVN6ANoFkdAm7mDVtoBaXV9lChoBmgJaA9DCBl0QujglnJAlIaUUpRoFU0XAWgWR0CbudjD8+A3dX2UKGgGaAloD0MI1ZXP8jwEbkCUhpRSlGgVTRYBaBZHQJu6ZNh3JPt1fZQoaAZoCWgPQwj8UGnEjDJzQJSGlFKUaBVNHgFoFkdAm7up7w8W9HV9lChoBmgJaA9DCPtcbcU+8XBAlIaUUpRoFU0oAWgWR0Cbu/x8D0UXdX2UKGgGaAloD0MIPUM4ZhlgckCUhpRSlGgVTU4BaBZHQJu8EOYplSV1fZQoaAZoCWgPQwgdc56xb21wQJSGlFKUaBVNXQFoFkdAm7x91IRRM3V9lChoBmgJaA9DCLuX++QoznBAlIaUUpRoFU1EAWgWR0CbvS752yLRdX2UKGgGaAloD0MI8E4+PTYMbECUhpRSlGgVTSwBaBZHQJu+K4NI9Tx1fZQoaAZoCWgPQwjAP6VKFOtxQJSGlFKUaBVNPwFoFkdAm79B0lqrR3V9lChoBmgJaA9DCPNzQ1M2FnFAlIaUUpRoFU0hAWgWR0Cbv7BQvYe1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}