Kayvane commited on
Commit
bc9cae5
·
1 Parent(s): aa48e35

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -18
README.md CHANGED
@@ -22,16 +22,16 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.8219254879975536
26
  - name: F1
27
  type: f1
28
- value: 0.8151998307079064
29
  - name: Recall
30
  type: recall
31
- value: 0.8219254879975536
32
  - name: Precision
33
  type: precision
34
- value: 0.8165753119578384
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset.
43
  It achieves the following results on the evaluation set:
44
- - Loss: 0.5451
45
- - Accuracy: 0.8219
46
- - F1: 0.8152
47
- - Recall: 0.8219
48
- - Precision: 0.8166
49
 
50
  ## Model description
51
 
@@ -78,15 +78,8 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
80
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
81
- | 1.0678 | 0.2 | 500 | 0.9935 | 0.7193 | 0.6715 | 0.7193 | 0.6348 |
82
- | 0.8447 | 0.41 | 1000 | 0.8331 | 0.7468 | 0.7108 | 0.7468 | 0.6990 |
83
- | 0.7913 | 0.61 | 1500 | 0.7022 | 0.7770 | 0.7457 | 0.7770 | 0.7685 |
84
- | 0.6973 | 0.82 | 2000 | 0.6584 | 0.7922 | 0.7710 | 0.7922 | 0.7849 |
85
- | 0.5572 | 1.02 | 2500 | 0.6034 | 0.8076 | 0.7986 | 0.8076 | 0.7994 |
86
- | 0.5528 | 1.22 | 3000 | 0.6017 | 0.8085 | 0.7986 | 0.8085 | 0.8063 |
87
- | 0.5435 | 1.43 | 3500 | 0.5721 | 0.8147 | 0.8085 | 0.8147 | 0.8107 |
88
- | 0.4995 | 1.63 | 4000 | 0.5598 | 0.8161 | 0.8125 | 0.8161 | 0.8144 |
89
- | 0.4854 | 1.83 | 4500 | 0.5451 | 0.8219 | 0.8152 | 0.8219 | 0.8166 |
90
 
91
 
92
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.8210081035625095
26
  - name: F1
27
  type: f1
28
+ value: 0.8181860806077187
29
  - name: Recall
30
  type: recall
31
+ value: 0.8210081035625095
32
  - name: Precision
33
  type: precision
34
+ value: 0.8187295355668672
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.5521
45
+ - Accuracy: 0.8210
46
+ - F1: 0.8182
47
+ - Recall: 0.8210
48
+ - Precision: 0.8187
49
 
50
  ## Model description
51
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
80
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
81
+ | 0.7063 | 0.82 | 2000 | 0.6899 | 0.7809 | 0.7544 | 0.7809 | 0.7646 |
82
+ | 0.505 | 1.63 | 4000 | 0.5521 | 0.8210 | 0.8182 | 0.8210 | 0.8187 |
 
 
 
 
 
 
 
83
 
84
 
85
  ### Framework versions