update model card README.md
Browse files
README.md
CHANGED
@@ -22,16 +22,16 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
- name: F1
|
27 |
type: f1
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: Precision
|
33 |
type: precision
|
34 |
-
value: 0.
|
35 |
---
|
36 |
|
37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
41 |
|
42 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset.
|
43 |
It achieves the following results on the evaluation set:
|
44 |
-
- Loss: 0.
|
45 |
-
- Accuracy: 0.
|
46 |
-
- F1: 0.
|
47 |
-
- Recall: 0.
|
48 |
-
- Precision: 0.
|
49 |
|
50 |
## Model description
|
51 |
|
@@ -78,15 +78,8 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
|
81 |
-
|
|
82 |
-
| 0.
|
83 |
-
| 0.7913 | 0.61 | 1500 | 0.7022 | 0.7770 | 0.7457 | 0.7770 | 0.7685 |
|
84 |
-
| 0.6973 | 0.82 | 2000 | 0.6584 | 0.7922 | 0.7710 | 0.7922 | 0.7849 |
|
85 |
-
| 0.5572 | 1.02 | 2500 | 0.6034 | 0.8076 | 0.7986 | 0.8076 | 0.7994 |
|
86 |
-
| 0.5528 | 1.22 | 3000 | 0.6017 | 0.8085 | 0.7986 | 0.8085 | 0.8063 |
|
87 |
-
| 0.5435 | 1.43 | 3500 | 0.5721 | 0.8147 | 0.8085 | 0.8147 | 0.8107 |
|
88 |
-
| 0.4995 | 1.63 | 4000 | 0.5598 | 0.8161 | 0.8125 | 0.8161 | 0.8144 |
|
89 |
-
| 0.4854 | 1.83 | 4500 | 0.5451 | 0.8219 | 0.8152 | 0.8219 | 0.8166 |
|
90 |
|
91 |
|
92 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.8210081035625095
|
26 |
- name: F1
|
27 |
type: f1
|
28 |
+
value: 0.8181860806077187
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8210081035625095
|
32 |
- name: Precision
|
33 |
type: precision
|
34 |
+
value: 0.8187295355668672
|
35 |
---
|
36 |
|
37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
41 |
|
42 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset.
|
43 |
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 0.5521
|
45 |
+
- Accuracy: 0.8210
|
46 |
+
- F1: 0.8182
|
47 |
+
- Recall: 0.8210
|
48 |
+
- Precision: 0.8187
|
49 |
|
50 |
## Model description
|
51 |
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
|
81 |
+
| 0.7063 | 0.82 | 2000 | 0.6899 | 0.7809 | 0.7544 | 0.7809 | 0.7646 |
|
82 |
+
| 0.505 | 1.63 | 4000 | 0.5521 | 0.8210 | 0.8182 | 0.8210 | 0.8187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
### Framework versions
|