Update train_vits-2.py
Browse files- train_vits-2.py +36 -42
train_vits-2.py
CHANGED
@@ -15,38 +15,16 @@ from TTS.tts.utils.speakers import SpeakerManager
|
|
15 |
output_path = os.path.dirname(os.path.abspath(__file__))
|
16 |
|
17 |
|
18 |
-
|
19 |
-
"
|
20 |
-
"
|
21 |
-
"
|
22 |
-
|
23 |
-
|
24 |
-
""
|
25 |
-
txt_file = os.path.join(root_path, meta_file)
|
26 |
-
items = []
|
27 |
-
speaker_name = dataset_names[os.path.basename(root_path)]
|
28 |
-
print(speaker_name)
|
29 |
-
with open(txt_file, "r", encoding="utf-8") as ttf:
|
30 |
-
for line in ttf:
|
31 |
-
cols = line.split("|")
|
32 |
-
wav_file = cols[1].strip()
|
33 |
-
text = cols[0].strip()
|
34 |
-
wav_file = os.path.join(root_path, "wavs", wav_file)
|
35 |
-
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
|
36 |
-
return items
|
37 |
-
|
38 |
-
|
39 |
-
dataset_config1 = BaseDatasetConfig(
|
40 |
-
formatter="mozilla" ,meta_file_train="metadata.csv", path="/kaggle/input/persian-tts-dataset"
|
41 |
-
)
|
42 |
|
43 |
-
dataset_config2 = BaseDatasetConfig(
|
44 |
-
formatter="mozilla" ,meta_file_train="metadata.csv", path="/kaggle/input/persian-tts-dataset-famale"
|
45 |
)
|
46 |
|
47 |
-
dataset_config3 = BaseDatasetConfig(
|
48 |
-
formatter="mozilla" ,meta_file_train="metadata.csv", path="/kaggle/input/persian-tts-dataset-male"
|
49 |
-
)
|
50 |
|
51 |
|
52 |
|
@@ -54,9 +32,16 @@ audio_config = BaseAudioConfig(
|
|
54 |
sample_rate=22050,
|
55 |
do_trim_silence=False,
|
56 |
resample=False,
|
57 |
-
mel_fmin=0,
|
58 |
-
mel_fmax=None
|
59 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
character_config=CharactersConfig(
|
61 |
characters='ءابتثجحخدذرزسشصضطظعغفقلمنهويِپچژکگیآأؤإئًَُّ',
|
62 |
punctuations='!(),-.:;? ̠،؛؟<>',
|
@@ -97,7 +82,20 @@ config = VitsConfig(
|
|
97 |
["یکی اسبی به عاریت خواست","changiz",null,"fa"]
|
98 |
],
|
99 |
output_path=output_path,
|
100 |
-
datasets=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
)
|
102 |
|
103 |
# INITIALIZE THE AUDIO PROCESSOR
|
@@ -115,26 +113,22 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
|
|
115 |
# You can define your custom sample loader returning the list of samples.
|
116 |
# Or define your custom formatter and pass it to the `load_tts_samples`.
|
117 |
# Check `TTS.tts.datasets.load_tts_samples` for more details.
|
|
|
|
|
|
|
|
|
118 |
train_samples, eval_samples = load_tts_samples(
|
119 |
config.datasets,
|
120 |
-
formatter=mozilla_with_speaker,
|
121 |
eval_split=True,
|
122 |
eval_split_max_size=config.eval_split_max_size,
|
123 |
eval_split_size=config.eval_split_size,
|
124 |
)
|
125 |
|
|
|
|
|
126 |
|
127 |
|
128 |
-
speaker_manager = SpeakerManager()
|
129 |
-
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name")
|
130 |
-
config.num_speakers = speaker_manager.num_speakers
|
131 |
-
print("\n"*10)
|
132 |
-
print("#>"*10)
|
133 |
-
print(speaker_manager.speaker_names)
|
134 |
-
print("\n"*10)
|
135 |
|
136 |
-
# init model
|
137 |
-
model = Vits(config, ap, tokenizer, speaker_manager=speaker_manager)
|
138 |
|
139 |
# init the trainer and 🚀
|
140 |
trainer = Trainer(
|
|
|
15 |
output_path = os.path.dirname(os.path.abspath(__file__))
|
16 |
|
17 |
|
18 |
+
dataset_config = BaseDatasetConfig(
|
19 |
+
formatter="mozilla_with_speaker",
|
20 |
+
dataset_name="multi_persian",
|
21 |
+
meta_file_train="metadata.csv",
|
22 |
+
language="fa",
|
23 |
+
phonemizer="espeak",
|
24 |
+
path="/kaggle/input",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
26 |
)
|
27 |
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
|
|
|
32 |
sample_rate=22050,
|
33 |
do_trim_silence=False,
|
34 |
resample=False,
|
|
|
|
|
35 |
)
|
36 |
+
|
37 |
+
|
38 |
+
### Extract speaker embeddings
|
39 |
+
SPEAKER_ENCODER_CHECKPOINT_PATH = (
|
40 |
+
"https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar"
|
41 |
+
)
|
42 |
+
SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json"
|
43 |
+
|
44 |
+
|
45 |
character_config=CharactersConfig(
|
46 |
characters='ءابتثجحخدذرزسشصضطظعغفقلمنهويِپچژکگیآأؤإئًَُّ',
|
47 |
punctuations='!(),-.:;? ̠،؛؟<>',
|
|
|
82 |
["یکی اسبی به عاریت خواست","changiz",null,"fa"]
|
83 |
],
|
84 |
output_path=output_path,
|
85 |
+
datasets=[audio_config],
|
86 |
+
d_vector_file=['/kaggle/working/speakers.pth'],
|
87 |
+
use_d_vector_file=True,
|
88 |
+
d_vector_dim=512,
|
89 |
+
num_layers_text_encoder=10,
|
90 |
+
speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH,
|
91 |
+
speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH,
|
92 |
+
# Enable the weighted sampler
|
93 |
+
use_weighted_sampler=True,
|
94 |
+
# Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has
|
95 |
+
weighted_sampler_attrs={"speaker_name": 1.0},
|
96 |
+
weighted_sampler_multipliers={},
|
97 |
+
# It defines the Speaker Consistency Loss (SCL) α to 9 like the paper
|
98 |
+
speaker_encoder_loss_alpha=9.0,
|
99 |
)
|
100 |
|
101 |
# INITIALIZE THE AUDIO PROCESSOR
|
|
|
113 |
# You can define your custom sample loader returning the list of samples.
|
114 |
# Or define your custom formatter and pass it to the `load_tts_samples`.
|
115 |
# Check `TTS.tts.datasets.load_tts_samples` for more details.
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
# Load all the datasets samples and split traning and evaluation sets
|
120 |
train_samples, eval_samples = load_tts_samples(
|
121 |
config.datasets,
|
|
|
122 |
eval_split=True,
|
123 |
eval_split_max_size=config.eval_split_max_size,
|
124 |
eval_split_size=config.eval_split_size,
|
125 |
)
|
126 |
|
127 |
+
# Init the model
|
128 |
+
model = Vits.init_from_config(config,ap, tokenizer)
|
129 |
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
|
|
|
|
132 |
|
133 |
# init the trainer and 🚀
|
134 |
trainer = Trainer(
|