File size: 5,160 Bytes
6ee4f08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa43d23
 
6ee4f08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb10b35
6ee4f08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os

from trainer import Trainer, TrainerArgs

from TTS.tts.configs.shared_configs import BaseDatasetConfig , CharactersConfig
from TTS.config.shared_configs import BaseAudioConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import Vits, VitsAudioConfig
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
from TTS.tts.utils.speakers import SpeakerManager


output_path = os.path.dirname(os.path.abspath(__file__))


dataset_names={
    "persian-tts-dataset-famale":"dilara",
    "persian-tts-dataset":"changiz",
    "persian-tts-dataset-male":"farid"
}
def mozilla_with_speaker(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Normalizes Mozilla meta data files to TTS format"""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = dataset_names[os.path.basename(root_path)]
    print(speaker_name)
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            cols = line.split("|")
            wav_file = cols[1].strip()
            text = cols[0].strip()
            wav_file = os.path.join(root_path, "wavs", wav_file)
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


dataset_config1 = BaseDatasetConfig(
    formatter="mozilla" ,meta_file_train="metadata.csv", path="/kaggle/input/persian-tts-dataset" 
)

dataset_config2 = BaseDatasetConfig(
    formatter="mozilla" ,meta_file_train="metadata.csv", path="/kaggle/input/persian-tts-dataset-famale" 
)

dataset_config3 = BaseDatasetConfig(
    formatter="mozilla" ,meta_file_train="metadata.csv", path="/kaggle/input/persian-tts-dataset-male" 
)



audio_config = BaseAudioConfig(
    sample_rate=22050,
    do_trim_silence=False,
    resample=False,
    mel_fmin=0,
    mel_fmax=None 
)
character_config=CharactersConfig(
  characters='ءابتثجحخدذرزسشصضطظعغفقلمنهويِپچژکگیآأؤإئًَُّ',
  punctuations='!(),-.:;? ̠،؛؟‌<>',
  phonemes='ˈˌːˑpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟaegiouwyɪʊ̩æɑɔəɚɛɝɨ̃ʉʌʍ0123456789"#$%*+/=ABCDEFGHIJKLMNOPRSTUVWXYZ[]^_{}',
  pad="<PAD>",
  eos="<EOS>",
  bos="<BOS>",
  blank="<BLNK>",
  characters_class="TTS.tts.utils.text.characters.IPAPhonemes",
  )
config = VitsConfig(
    audio=audio_config,
    run_name="vits_fa_female",
    batch_size=8,
    eval_batch_size=4,
    batch_group_size=5,
    num_loader_workers=0,
    num_eval_loader_workers=2,
    run_eval=True,
    test_delay_epochs=-1,
    epochs=1000,
    save_step=1000,
    text_cleaner="basic_cleaners",
    use_phonemes=True,
    phoneme_language="fa",
    characters=character_config,
    phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
    compute_input_seq_cache=True,
    print_step=25,
    print_eval=True,
    mixed_precision=False,
    test_sentences=[
        ["سلطان محمود در زمستانی سخت به طلخک گفت که: با این جامه ی یک لا در این سرما چه می کنی "],
        ["مردی نزد بقالی آمد و گفت پیاز هم ده تا دهان بدان خو شبوی سازم."],
        ["از مال خود پاره ای گوشت بستان و زیره بایی معطّر بساز"],
        ["یک بار هم از جهنم بگویید."],
        ["یکی اسبی به عاریت خواست"]
    ],
    output_path=output_path,
    datasets=[dataset_config1,dataset_config2,dataset_config3],
)

# INITIALIZE THE AUDIO PROCESSOR
# Audio processor is used for feature extraction and audio I/O.
# It mainly serves to the dataloader and the training loggers.
ap = AudioProcessor.init_from_config(config)

# INITIALIZE THE TOKENIZER
# Tokenizer is used to convert text to sequences of token IDs.
# config is updated with the default characters if not defined in the config.
tokenizer, config = TTSTokenizer.init_from_config(config)

# LOAD DATA SAMPLES
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(
    config.datasets,
    formatter=mozilla_with_speaker,
    eval_split=True,
    eval_split_max_size=config.eval_split_max_size,
    eval_split_size=config.eval_split_size,
)



speaker_manager = SpeakerManager()
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name")
config.num_speakers = speaker_manager.num_speakers
print("\n"*10)
print("#>"*10)
print(speaker_manager.speaker_names)
print("\n"*10)

# init model
model = Vits(config, ap, tokenizer, speaker_manager=speaker_manager)

# init the trainer and 🚀
trainer = Trainer(
    TrainerArgs(),
    config,
    output_path,
    model=model,
    train_samples=train_samples,
    eval_samples=eval_samples,
)
trainer.fit()