File size: 5,137 Bytes
34e7c0c d2ed842 34e7c0c d2ed842 34e7c0c d2ed842 34e7c0c d2ed842 34e7c0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import os
from trainer import Trainer, TrainerArgs
from TTS.tts.configs.shared_configs import BaseDatasetConfig , CharactersConfig
from TTS.config.shared_configs import BaseAudioConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import Vits, VitsAudioConfig
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
from TTS.tts.utils.speakers import SpeakerManager
output_path = os.path.dirname(os.path.abspath(__file__))
dataset_names={
"persian-tts-dataset-famale":"dilara",
"persian-tts-dataset":"changiz",
"persian-tts-dataset-male":"farid"
}
def mozilla_with_speaker(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
"""Normalizes Mozilla meta data files to TTS format"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = dataset_names[os.path.basename(root_path)]
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("|")
wav_file = cols[1].strip()
text = cols[0].strip()
wav_file = os.path.join(root_path, "wavs", wav_file)
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
return items
dataset_config1 = BaseDatasetConfig(
formatter="mozilla" ,meta_file_train="metadata.csv", path="/kaggle/input/persian-tts-dataset-famale"
)
dataset_config2 = BaseDatasetConfig(
formatter="mozilla" ,meta_file_train="metadata.csv", path="/kaggle/input/persian-tts-dataset"
)
dataset_config3 = BaseDatasetConfig(
formatter="mozilla" ,meta_file_train="metadata.csv", path="/kaggle/input/persian-tts-dataset-male"
)
audio_config = BaseAudioConfig(
sample_rate=22050,
do_trim_silence=False,
resample=False,
mel_fmin=0,
mel_fmax=None
)
character_config=CharactersConfig(
characters='ءابتثجحخدذرزسشصضطظعغفقلمنهويِپچژکگیآأؤإئًَُّ',
punctuations='!(),-.:;? ̠،؛؟<>',
phonemes='ˈˌːˑpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟaegiouwyɪʊ̩æɑɔəɚɛɝɨ̃ʉʌʍ0123456789"#$%*+/=ABCDEFGHIJKLMNOPRSTUVWXYZ[]^_{}',
pad="<PAD>",
eos="<EOS>",
bos="<BOS>",
blank="<BLNK>",
characters_class="TTS.tts.utils.text.characters.IPAPhonemes",
)
config = VitsConfig(
audio=audio_config,
run_name="vits_fa_female",
batch_size=16,
eval_batch_size=8,
batch_group_size=5,
num_loader_workers=0,
num_eval_loader_workers=2,
run_eval=True,
test_delay_epochs=-1,
epochs=1000,
save_step=1000,
text_cleaner="basic_cleaners",
use_phonemes=True,
phoneme_language="fa",
characters=character_config,
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
compute_input_seq_cache=True,
print_step=25,
print_eval=True,
mixed_precision=False,
test_sentences=[
["سلطان محمود در زمستانی سخت به طلخک گفت که: با این جامه ی یک لا در این سرما چه می کنی "],
["مردی نزد بقالی آمد و گفت پیاز هم ده تا دهان بدان خو شبوی سازم."],
["از مال خود پاره ای گوشت بستان و زیره بایی معطّر بساز"],
["یک بار هم از جهنم بگویید."],
["یکی اسبی به عاریت خواست"]
],
output_path=output_path,
datasets=[dataset_config1,dataset_config2,dataset_config3],
)
# INITIALIZE THE AUDIO PROCESSOR
# Audio processor is used for feature extraction and audio I/O.
# It mainly serves to the dataloader and the training loggers.
ap = AudioProcessor.init_from_config(config)
# INITIALIZE THE TOKENIZER
# Tokenizer is used to convert text to sequences of token IDs.
# config is updated with the default characters if not defined in the config.
tokenizer, config = TTSTokenizer.init_from_config(config)
# LOAD DATA SAMPLES
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(
config.datasets,
formatter=mozilla_with_speaker,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
speaker_manager = SpeakerManager()
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name")
config.num_speakers = speaker_manager.num_speakers
print("\n"*10)
print("#>"*10)
print(speaker_manager.speaker_names)
print("\n"*10)
# init model
model = Vits(config, ap, tokenizer, speaker_manager=speaker_manager)
# init the trainer and 🚀
trainer = Trainer(
TrainerArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit() |