ONNX
qmller commited on
Commit
c857e00
·
verified ·
1 Parent(s): 38339ab

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - detection-datasets/coco
5
+ ---
6
+
7
+ # Introduction
8
+
9
+ This repository stores the model for YOLOv4-CSP-Mish, compatible with Kalray's neural network API. </br>
10
+ Please see www.github.com/kalray/kann-models-zoo for details and proper usage. </br>
11
+
12
+ # Contents
13
+
14
+ - ONNX: yolov4-csp-mish_608x608.optimized.onnx
15
+
16
+ # Lecture note reference
17
+
18
+ + YOLOv4: Optimal Speed and Accuracy of Object Detection, https://arxiv.org/pdf/2004.10934.pdf
19
+
20
+ # Repository or links references
21
+
22
+ - repository: https://github.com/WongKinYiu/PyTorch_YOLOv4
23
+ - cfg: https://github.com/WongKinYiu/PyTorch_YOLOv4/blob/master/cfg/yolov4-csp-s-mish.cfg
24
+ - weights: https://drive.google.com/file/d/1730MvuVhTttVJGk4ftN1zql9z7U4iQ6U/view?usp=sharing
25
+
26
+ BibTeX entry and citation info
27
+ ```
28
+ @misc{bochkovskiy2020yolov4,
29
+ title={YOLOv4: Optimal Speed and Accuracy of Object Detection},
30
+ author={Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao},
31
+ year={2020},
32
+ eprint={2004.10934},
33
+ archivePrefix={arXiv},
34
+ primaryClass={cs.CV}
35
+ }
36
+ @InProceedings{Wang_2021_CVPR,
37
+ author = {Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
38
+ title = {{Scaled-YOLOv4}: Scaling Cross Stage Partial Network},
39
+ booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
40
+ month = {June},
41
+ year = {2021},
42
+ pages = {13029-13038}
43
+ }
44
+ ```