Image Classification
TF Lite
File size: 1,861 Bytes
7ff245f
6fa0c29
7ff245f
 
 
 
 
 
 
 
 
 
 
 
 
da5fbc5
 
7ff245f
 
 
 
 
 
 
6fa0c29
 
7ff245f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fa0c29
7ff245f
 
 
 
 
 
 
6fa0c29
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
license: apache-2.0
datasets:
- ILSVRC/imagenet-1k
pipeline_tag: image-classification
---

# Introduction

This repository stores the model for Mobilenet-v1, compatible with Kalray's neural network API. </br>
Please see www.github.com/kalray/kann-models-zoo for details and proper usage. </br>
Please see https://huggingface.co/docs/transformers/main/en/model_doc/mobilenet_v1 for Mobilenet-v1 model description. </br>

# Contents

- Tensorflow: mobilenet-v1-mlperf.pb
- TFlite: mobilenet-v1-mlperf.tflite

# Lecture note reference

- MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, https://arxiv.org/pdf/1704.04861.pdf

# Repository or links references

- [Tensorflow(code)](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py)
- [Tensorflow(tgz)](http://download.tensorflow.org/models/mobilenet_v1_2018_02_22/mobilenet_v1_1.0_224.tgz)

BibTeX entry and citation info
```
@article{DBLP:journals/corr/HowardZCKWWAA17,
  author       = {Andrew G. Howard and
                  Menglong Zhu and
                  Bo Chen and
                  Dmitry Kalenichenko and
                  Weijun Wang and
                  Tobias Weyand and
                  Marco Andreetto and
                  Hartwig Adam},
  title        = {MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
                  Applications},
  journal      = {CoRR},
  volume       = {abs/1704.04861},
  year         = {2017},
  url          = {http://arxiv.org/abs/1704.04861},
  eprinttype   = {arXiv},
  eprint       = {1704.04861},
  timestamp    = {Thu, 27 May 2021 16:20:51 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/HowardZCKWWAA17.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
```

Authors:
+ [email protected]
+ [email protected]