KYUNGHYUN9 commited on
Commit
0e93469
·
verified ·
1 Parent(s): d220d45

Upload 12 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: klue/roberta-base
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:574418
24
+ - loss:MultipleNegativesRankingLoss
25
+ - loss:CosineSimilarityLoss
26
+ widget:
27
+ - source_sentence: 두 마리의 개가 해변을 달려 내려갔다.
28
+ sentences:
29
+ - '아프가니스탄 폭탄 공격으로 적어도 18명이 사망했다 : 관리들'
30
+ - 해변에서 달리는 개 두 마리
31
+ - 눈 속에서 노는 개 네 마리
32
+ - source_sentence: 한 여성이 남자와 게임을 하고 있다.
33
+ sentences:
34
+ - 한 남자가 피아노를 치고 있다.
35
+ - 기차 마당의 선로에 앉아 있는 기차
36
+ - 에콰도르는 아직 어샌지의 망명을 결정하지 않았다.
37
+ - source_sentence: 젊은 남자는 화려한 액세서리를 가지고 있다.
38
+ sentences:
39
+ - 다채로운 꽃무늬 리와 다채로운 팔찌를 든 청년이 깃발을 들고 있다.
40
+ - 한 남자가 서핑 보드 위에 있다.
41
+ - 화려한 옷을 입은 젊은이가 총을 들고 있다.
42
+ - source_sentence: 그들은 서로 가까이 있지 않다.
43
+ sentences:
44
+ - 그리고 나는 내 돈을 돌봐야 했다. 나는 내 자신의 생명보험에 지불하는 내 자신의 당좌예금 계좌를 가지고 있고, 내가 무슨 뜻인지조차 모르는
45
+ 많은 아이들을 알고 있다. 나는 그들에게 내가 내 생명보험에 지불한다고 말하고 그들의 입이 그냥 바닥에 떨어진다.
46
+ - 그들은 샤토와 매우 가깝다.
47
+ - 그들은 샤토와 서로 어느 정도 떨어져 있다.
48
+ - source_sentence: 딱딱한 모자를 쓴 남자가 건물 프레임 앞에 주차된 빨간 트럭의 침대를 쳐다본다.
49
+ sentences:
50
+ - 남자가 자고 있다.
51
+ - 2. 알코올문제의 규모와 다른 방법으로 치료를 받지 않을 수 있는 환자를 식별할 수 있는 응급부서의 능력을 감안할 때, 자금조달기관은 ED의
52
+ 알코올문제 연구에 높은 우선순위를 두어야 한다.
53
+ - 한 남자가 트럭을 보고 있다.
54
+ model-index:
55
+ - name: SentenceTransformer based on klue/roberta-base
56
+ results:
57
+ - task:
58
+ type: semantic-similarity
59
+ name: Semantic Similarity
60
+ dataset:
61
+ name: sts dev
62
+ type: sts-dev
63
+ metrics:
64
+ - type: pearson_cosine
65
+ value: 0.8610601836184975
66
+ name: Pearson Cosine
67
+ - type: spearman_cosine
68
+ value: 0.8634197198921464
69
+ name: Spearman Cosine
70
+ - type: pearson_manhattan
71
+ value: 0.8544694872859289
72
+ name: Pearson Manhattan
73
+ - type: spearman_manhattan
74
+ value: 0.8590618059127191
75
+ name: Spearman Manhattan
76
+ - type: pearson_euclidean
77
+ value: 0.8548774854000663
78
+ name: Pearson Euclidean
79
+ - type: spearman_euclidean
80
+ value: 0.8593350742997908
81
+ name: Spearman Euclidean
82
+ - type: pearson_dot
83
+ value: 0.8331606248521055
84
+ name: Pearson Dot
85
+ - type: spearman_dot
86
+ value: 0.8324300838050938
87
+ name: Spearman Dot
88
+ - type: pearson_max
89
+ value: 0.8610601836184975
90
+ name: Pearson Max
91
+ - type: spearman_max
92
+ value: 0.8634197198921464
93
+ name: Spearman Max
94
+ ---
95
+
96
+ # SentenceTransformer based on klue/roberta-base
97
+
98
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
99
+
100
+ ## Model Details
101
+
102
+ ### Model Description
103
+ - **Model Type:** Sentence Transformer
104
+ - **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
105
+ - **Maximum Sequence Length:** 128 tokens
106
+ - **Output Dimensionality:** 768 tokens
107
+ - **Similarity Function:** Cosine Similarity
108
+ <!-- - **Training Dataset:** Unknown -->
109
+ <!-- - **Language:** Unknown -->
110
+ <!-- - **License:** Unknown -->
111
+
112
+ ### Model Sources
113
+
114
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
115
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
116
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
117
+
118
+ ### Full Model Architecture
119
+
120
+ ```
121
+ SentenceTransformer(
122
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
123
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
124
+ )
125
+ ```
126
+
127
+ ## Usage
128
+
129
+ ### Direct Usage (Sentence Transformers)
130
+
131
+ First install the Sentence Transformers library:
132
+
133
+ ```bash
134
+ pip install -U sentence-transformers
135
+ ```
136
+
137
+ Then you can load this model and run inference.
138
+ ```python
139
+ from sentence_transformers import SentenceTransformer
140
+
141
+ # Download from the 🤗 Hub
142
+ model = SentenceTransformer("sentence_transformers_model_id")
143
+ # Run inference
144
+ sentences = [
145
+ '딱딱한 모자를 쓴 남자가 건물 프레임 앞에 주차된 빨간 트럭의 침대를 쳐다본다.',
146
+ '한 남자가 트럭을 보고 있다.',
147
+ '남자가 자고 있다.',
148
+ ]
149
+ embeddings = model.encode(sentences)
150
+ print(embeddings.shape)
151
+ # [3, 768]
152
+
153
+ # Get the similarity scores for the embeddings
154
+ similarities = model.similarity(embeddings, embeddings)
155
+ print(similarities.shape)
156
+ # [3, 3]
157
+ ```
158
+
159
+ <!--
160
+ ### Direct Usage (Transformers)
161
+
162
+ <details><summary>Click to see the direct usage in Transformers</summary>
163
+
164
+ </details>
165
+ -->
166
+
167
+ <!--
168
+ ### Downstream Usage (Sentence Transformers)
169
+
170
+ You can finetune this model on your own dataset.
171
+
172
+ <details><summary>Click to expand</summary>
173
+
174
+ </details>
175
+ -->
176
+
177
+ <!--
178
+ ### Out-of-Scope Use
179
+
180
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
181
+ -->
182
+
183
+ ## Evaluation
184
+
185
+ ### Metrics
186
+
187
+ #### Semantic Similarity
188
+ * Dataset: `sts-dev`
189
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
190
+
191
+ | Metric | Value |
192
+ |:-------------------|:-----------|
193
+ | pearson_cosine | 0.8611 |
194
+ | spearman_cosine | 0.8634 |
195
+ | pearson_manhattan | 0.8545 |
196
+ | spearman_manhattan | 0.8591 |
197
+ | pearson_euclidean | 0.8549 |
198
+ | spearman_euclidean | 0.8593 |
199
+ | pearson_dot | 0.8332 |
200
+ | spearman_dot | 0.8324 |
201
+ | pearson_max | 0.8611 |
202
+ | **spearman_max** | **0.8634** |
203
+
204
+ <!--
205
+ ## Bias, Risks and Limitations
206
+
207
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
208
+ -->
209
+
210
+ <!--
211
+ ### Recommendations
212
+
213
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
214
+ -->
215
+
216
+ ## Training Details
217
+
218
+ ### Training Datasets
219
+
220
+ #### Unnamed Dataset
221
+
222
+
223
+ * Size: 568,640 training samples
224
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
225
+ * Approximate statistics based on the first 1000 samples:
226
+ | | sentence_0 | sentence_1 | sentence_2 |
227
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
228
+ | type | string | string | string |
229
+ | details | <ul><li>min: 4 tokens</li><li>mean: 19.18 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 18.31 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.58 tokens</li><li>max: 54 tokens</li></ul> |
230
+ * Samples:
231
+ | sentence_0 | sentence_1 | sentence_2 |
232
+ |:----------------------------------------|:-------------------------------------------------|:--------------------------------------|
233
+ | <code>발생 부하가 함께 5% 적습니다.</code> | <code>발생 부하의 5% 감소와 함께 11.</code> | <code>발생 부하가 5% 증가합니다.</code> |
234
+ | <code>어떤 행사를 위해 음식과 옷을 배급하는 여성들.</code> | <code>여성들은 음식과 옷을 나눠줌으로써 난민들을 돕고 있다.</code> | <code>여자들이 사막에서 오토바이를 운전하고 있다.</code> |
235
+ | <code>어린 아이들은 그 지식을 얻을 필요가 있다.</code> | <code>응, 우리 젊은이들 중 많은 사람들이 그걸 배워야 할 것 같아.</code> | <code>젊은 사람들은 배울 필요가 없다.</code> |
236
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
237
+ ```json
238
+ {
239
+ "scale": 20.0,
240
+ "similarity_fct": "cos_sim"
241
+ }
242
+ ```
243
+
244
+ #### Unnamed Dataset
245
+
246
+
247
+ * Size: 5,778 training samples
248
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
249
+ * Approximate statistics based on the first 1000 samples:
250
+ | | sentence_0 | sentence_1 | label |
251
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
252
+ | type | string | string | float |
253
+ | details | <ul><li>min: 3 tokens</li><li>mean: 16.98 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 16.88 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
254
+ * Samples:
255
+ | sentence_0 | sentence_1 | label |
256
+ |:---------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|:--------------------------------|
257
+ | <code>다우존스 산업평균지수는 9011.53으로 98.32, 즉 약 1.1% 하락했다.</code> | <code>다우존스 산업평균지수는 9,011.53으로 98.32포인트 하락했다.</code> | <code>0.6799999999999999</code> |
258
+ | <code>미군 특수부대는 콜롬비아에서 두 번째로 큰 유전에서 원유를 운반하는 파이프라인을 보호하기 위해 이 지역의 군사기지에서 콜롬비아 군인들을 훈련시키고 있다.</code> | <code>미군 특수부대는 이 지역의 군사기지에서 콜롬비아 군인들을 훈련시켜 파이프라인을 보호하고 있다.</code> | <code>0.64</code> |
259
+ | <code>한 사람은 또한 영어/터키어 사전에서 난민이라는 단어를 지적했다.</code> | <code>한 남자는 영어-터키 사전을 휘두르고 "피난민"이라는 단어를 가리켰다.</code> | <code>0.76</code> |
260
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
261
+ ```json
262
+ {
263
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
264
+ }
265
+ ```
266
+
267
+ ### Training Hyperparameters
268
+ #### Non-Default Hyperparameters
269
+
270
+ - `eval_strategy`: steps
271
+ - `num_train_epochs`: 5
272
+ - `batch_sampler`: no_duplicates
273
+ - `multi_dataset_batch_sampler`: round_robin
274
+
275
+ #### All Hyperparameters
276
+ <details><summary>Click to expand</summary>
277
+
278
+ - `overwrite_output_dir`: False
279
+ - `do_predict`: False
280
+ - `eval_strategy`: steps
281
+ - `prediction_loss_only`: True
282
+ - `per_device_train_batch_size`: 8
283
+ - `per_device_eval_batch_size`: 8
284
+ - `per_gpu_train_batch_size`: None
285
+ - `per_gpu_eval_batch_size`: None
286
+ - `gradient_accumulation_steps`: 1
287
+ - `eval_accumulation_steps`: None
288
+ - `learning_rate`: 5e-05
289
+ - `weight_decay`: 0.0
290
+ - `adam_beta1`: 0.9
291
+ - `adam_beta2`: 0.999
292
+ - `adam_epsilon`: 1e-08
293
+ - `max_grad_norm`: 1
294
+ - `num_train_epochs`: 5
295
+ - `max_steps`: -1
296
+ - `lr_scheduler_type`: linear
297
+ - `lr_scheduler_kwargs`: {}
298
+ - `warmup_ratio`: 0.0
299
+ - `warmup_steps`: 0
300
+ - `log_level`: passive
301
+ - `log_level_replica`: warning
302
+ - `log_on_each_node`: True
303
+ - `logging_nan_inf_filter`: True
304
+ - `save_safetensors`: True
305
+ - `save_on_each_node`: False
306
+ - `save_only_model`: False
307
+ - `restore_callback_states_from_checkpoint`: False
308
+ - `no_cuda`: False
309
+ - `use_cpu`: False
310
+ - `use_mps_device`: False
311
+ - `seed`: 42
312
+ - `data_seed`: None
313
+ - `jit_mode_eval`: False
314
+ - `use_ipex`: False
315
+ - `bf16`: False
316
+ - `fp16`: False
317
+ - `fp16_opt_level`: O1
318
+ - `half_precision_backend`: auto
319
+ - `bf16_full_eval`: False
320
+ - `fp16_full_eval`: False
321
+ - `tf32`: None
322
+ - `local_rank`: 0
323
+ - `ddp_backend`: None
324
+ - `tpu_num_cores`: None
325
+ - `tpu_metrics_debug`: False
326
+ - `debug`: []
327
+ - `dataloader_drop_last`: False
328
+ - `dataloader_num_workers`: 0
329
+ - `dataloader_prefetch_factor`: None
330
+ - `past_index`: -1
331
+ - `disable_tqdm`: False
332
+ - `remove_unused_columns`: True
333
+ - `label_names`: None
334
+ - `load_best_model_at_end`: False
335
+ - `ignore_data_skip`: False
336
+ - `fsdp`: []
337
+ - `fsdp_min_num_params`: 0
338
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
339
+ - `fsdp_transformer_layer_cls_to_wrap`: None
340
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
341
+ - `deepspeed`: None
342
+ - `label_smoothing_factor`: 0.0
343
+ - `optim`: adamw_torch
344
+ - `optim_args`: None
345
+ - `adafactor`: False
346
+ - `group_by_length`: False
347
+ - `length_column_name`: length
348
+ - `ddp_find_unused_parameters`: None
349
+ - `ddp_bucket_cap_mb`: None
350
+ - `ddp_broadcast_buffers`: False
351
+ - `dataloader_pin_memory`: True
352
+ - `dataloader_persistent_workers`: False
353
+ - `skip_memory_metrics`: True
354
+ - `use_legacy_prediction_loop`: False
355
+ - `push_to_hub`: False
356
+ - `resume_from_checkpoint`: None
357
+ - `hub_model_id`: None
358
+ - `hub_strategy`: every_save
359
+ - `hub_private_repo`: False
360
+ - `hub_always_push`: False
361
+ - `gradient_checkpointing`: False
362
+ - `gradient_checkpointing_kwargs`: None
363
+ - `include_inputs_for_metrics`: False
364
+ - `eval_do_concat_batches`: True
365
+ - `fp16_backend`: auto
366
+ - `push_to_hub_model_id`: None
367
+ - `push_to_hub_organization`: None
368
+ - `mp_parameters`:
369
+ - `auto_find_batch_size`: False
370
+ - `full_determinism`: False
371
+ - `torchdynamo`: None
372
+ - `ray_scope`: last
373
+ - `ddp_timeout`: 1800
374
+ - `torch_compile`: False
375
+ - `torch_compile_backend`: None
376
+ - `torch_compile_mode`: None
377
+ - `dispatch_batches`: None
378
+ - `split_batches`: None
379
+ - `include_tokens_per_second`: False
380
+ - `include_num_input_tokens_seen`: False
381
+ - `neftune_noise_alpha`: None
382
+ - `optim_target_modules`: None
383
+ - `batch_eval_metrics`: False
384
+ - `batch_sampler`: no_duplicates
385
+ - `multi_dataset_batch_sampler`: round_robin
386
+
387
+ </details>
388
+
389
+ ### Training Logs
390
+ | Epoch | Step | Training Loss | sts-dev_spearman_max |
391
+ |:------:|:----:|:-------------:|:--------------------:|
392
+ | 0.3458 | 500 | 0.4169 | - |
393
+ | 0.6916 | 1000 | 0.2952 | 0.8533 |
394
+ | 1.0007 | 1447 | - | 0.8581 |
395
+ | 1.0367 | 1500 | 0.2744 | - |
396
+ | 1.3824 | 2000 | 0.1415 | 0.8520 |
397
+ | 1.7282 | 2500 | 0.0886 | - |
398
+ | 2.0007 | 2894 | - | 0.8634 |
399
+
400
+
401
+ ### Framework Versions
402
+ - Python: 3.11.9
403
+ - Sentence Transformers: 3.0.1
404
+ - Transformers: 4.41.2
405
+ - PyTorch: 2.2.2+cu121
406
+ - Accelerate: 0.31.0
407
+ - Datasets: 2.20.0
408
+ - Tokenizers: 0.19.1
409
+
410
+ ## Citation
411
+
412
+ ### BibTeX
413
+
414
+ #### Sentence Transformers
415
+ ```bibtex
416
+ @inproceedings{reimers-2019-sentence-bert,
417
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
418
+ author = "Reimers, Nils and Gurevych, Iryna",
419
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
420
+ month = "11",
421
+ year = "2019",
422
+ publisher = "Association for Computational Linguistics",
423
+ url = "https://arxiv.org/abs/1908.10084",
424
+ }
425
+ ```
426
+
427
+ #### MultipleNegativesRankingLoss
428
+ ```bibtex
429
+ @misc{henderson2017efficient,
430
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
431
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
432
+ year={2017},
433
+ eprint={1705.00652},
434
+ archivePrefix={arXiv},
435
+ primaryClass={cs.CL}
436
+ }
437
+ ```
438
+
439
+ <!--
440
+ ## Glossary
441
+
442
+ *Clearly define terms in order to be accessible across audiences.*
443
+ -->
444
+
445
+ <!--
446
+ ## Model Card Authors
447
+
448
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
449
+ -->
450
+
451
+ <!--
452
+ ## Model Card Contact
453
+
454
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
455
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "klue/roberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.41.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.2.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8146ba7f9363220d673a6d2f8f0509511acbd9ab4f66893bf506a79043bb0e57
3
+ size 442494816
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
similarity_evaluation_sts-test_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ -1,-1,0.8332760698894233,0.8369215224141134,0.8288968531957703,0.8325243384920357,0.8290760198503802,0.8328332559960856,0.8118611223205467,0.8081681790828251
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 128,
52
+ "never_split": null,
53
+ "pad_token": "[PAD]",
54
+ "sep_token": "[SEP]",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "BertTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff