KYUNGHYUN9
commited on
Upload 12 files
Browse files- 1_Pooling/config.json +10 -0
- README.md +455 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- similarity_evaluation_sts-test_results.csv +2 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +59 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: klue/roberta-base
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
metrics:
|
7 |
+
- pearson_cosine
|
8 |
+
- spearman_cosine
|
9 |
+
- pearson_manhattan
|
10 |
+
- spearman_manhattan
|
11 |
+
- pearson_euclidean
|
12 |
+
- spearman_euclidean
|
13 |
+
- pearson_dot
|
14 |
+
- spearman_dot
|
15 |
+
- pearson_max
|
16 |
+
- spearman_max
|
17 |
+
pipeline_tag: sentence-similarity
|
18 |
+
tags:
|
19 |
+
- sentence-transformers
|
20 |
+
- sentence-similarity
|
21 |
+
- feature-extraction
|
22 |
+
- generated_from_trainer
|
23 |
+
- dataset_size:574418
|
24 |
+
- loss:MultipleNegativesRankingLoss
|
25 |
+
- loss:CosineSimilarityLoss
|
26 |
+
widget:
|
27 |
+
- source_sentence: 두 마리의 개가 해변을 달려 내려갔다.
|
28 |
+
sentences:
|
29 |
+
- '아프가니스탄 폭탄 공격으로 적어도 18명이 사망했다 : 관리들'
|
30 |
+
- 해변에서 달리는 개 두 마리
|
31 |
+
- 눈 속에서 노는 개 네 마리
|
32 |
+
- source_sentence: 한 여성이 남자와 게임을 하고 있다.
|
33 |
+
sentences:
|
34 |
+
- 한 남자가 피아노를 치고 있다.
|
35 |
+
- 기차 마당의 선로에 앉아 있는 기차
|
36 |
+
- 에콰도르는 아직 어샌지의 망명을 결정하지 않았다.
|
37 |
+
- source_sentence: 젊은 남자는 화려한 액세서리를 가지고 있다.
|
38 |
+
sentences:
|
39 |
+
- 다채로운 꽃무늬 리와 다채로운 팔찌를 든 청년이 깃발을 들고 있다.
|
40 |
+
- 한 남자가 서핑 보드 위에 있다.
|
41 |
+
- 화려한 옷을 입은 젊은이가 총을 들고 있다.
|
42 |
+
- source_sentence: 그들은 서로 가까이 있지 않다.
|
43 |
+
sentences:
|
44 |
+
- 그리고 나는 내 돈을 돌봐야 했다. 나는 내 자신의 생명보험에 지불하는 내 자신의 당좌예금 계좌를 가지고 있고, 내가 무슨 뜻인지조차 모르는
|
45 |
+
많은 아이들을 알고 있다. 나는 그들에게 내가 내 생명보험에 지불한다고 말하고 그들의 입이 그냥 바닥에 떨어진다.
|
46 |
+
- 그들은 샤토와 매우 가깝다.
|
47 |
+
- 그들은 샤토와 서로 어느 정도 떨어져 있다.
|
48 |
+
- source_sentence: 딱딱한 모자를 쓴 남자가 건물 프레임 앞에 주차된 빨간 트럭의 침대를 쳐다본다.
|
49 |
+
sentences:
|
50 |
+
- 남자가 자고 있다.
|
51 |
+
- 2. 알코올문제의 규모와 다른 방법으로 치료를 받지 않을 수 있는 환자를 식별할 수 있는 응급부서의 능력을 감안할 때, 자금조달기관은 ED의
|
52 |
+
알코올문제 연구에 높은 우선순위를 두어야 한다.
|
53 |
+
- 한 남자가 트럭을 보고 있다.
|
54 |
+
model-index:
|
55 |
+
- name: SentenceTransformer based on klue/roberta-base
|
56 |
+
results:
|
57 |
+
- task:
|
58 |
+
type: semantic-similarity
|
59 |
+
name: Semantic Similarity
|
60 |
+
dataset:
|
61 |
+
name: sts dev
|
62 |
+
type: sts-dev
|
63 |
+
metrics:
|
64 |
+
- type: pearson_cosine
|
65 |
+
value: 0.8610601836184975
|
66 |
+
name: Pearson Cosine
|
67 |
+
- type: spearman_cosine
|
68 |
+
value: 0.8634197198921464
|
69 |
+
name: Spearman Cosine
|
70 |
+
- type: pearson_manhattan
|
71 |
+
value: 0.8544694872859289
|
72 |
+
name: Pearson Manhattan
|
73 |
+
- type: spearman_manhattan
|
74 |
+
value: 0.8590618059127191
|
75 |
+
name: Spearman Manhattan
|
76 |
+
- type: pearson_euclidean
|
77 |
+
value: 0.8548774854000663
|
78 |
+
name: Pearson Euclidean
|
79 |
+
- type: spearman_euclidean
|
80 |
+
value: 0.8593350742997908
|
81 |
+
name: Spearman Euclidean
|
82 |
+
- type: pearson_dot
|
83 |
+
value: 0.8331606248521055
|
84 |
+
name: Pearson Dot
|
85 |
+
- type: spearman_dot
|
86 |
+
value: 0.8324300838050938
|
87 |
+
name: Spearman Dot
|
88 |
+
- type: pearson_max
|
89 |
+
value: 0.8610601836184975
|
90 |
+
name: Pearson Max
|
91 |
+
- type: spearman_max
|
92 |
+
value: 0.8634197198921464
|
93 |
+
name: Spearman Max
|
94 |
+
---
|
95 |
+
|
96 |
+
# SentenceTransformer based on klue/roberta-base
|
97 |
+
|
98 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
99 |
+
|
100 |
+
## Model Details
|
101 |
+
|
102 |
+
### Model Description
|
103 |
+
- **Model Type:** Sentence Transformer
|
104 |
+
- **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
|
105 |
+
- **Maximum Sequence Length:** 128 tokens
|
106 |
+
- **Output Dimensionality:** 768 tokens
|
107 |
+
- **Similarity Function:** Cosine Similarity
|
108 |
+
<!-- - **Training Dataset:** Unknown -->
|
109 |
+
<!-- - **Language:** Unknown -->
|
110 |
+
<!-- - **License:** Unknown -->
|
111 |
+
|
112 |
+
### Model Sources
|
113 |
+
|
114 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
115 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
116 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
117 |
+
|
118 |
+
### Full Model Architecture
|
119 |
+
|
120 |
+
```
|
121 |
+
SentenceTransformer(
|
122 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
|
123 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
124 |
+
)
|
125 |
+
```
|
126 |
+
|
127 |
+
## Usage
|
128 |
+
|
129 |
+
### Direct Usage (Sentence Transformers)
|
130 |
+
|
131 |
+
First install the Sentence Transformers library:
|
132 |
+
|
133 |
+
```bash
|
134 |
+
pip install -U sentence-transformers
|
135 |
+
```
|
136 |
+
|
137 |
+
Then you can load this model and run inference.
|
138 |
+
```python
|
139 |
+
from sentence_transformers import SentenceTransformer
|
140 |
+
|
141 |
+
# Download from the 🤗 Hub
|
142 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
143 |
+
# Run inference
|
144 |
+
sentences = [
|
145 |
+
'딱딱한 모자를 쓴 남자가 건물 프레임 앞에 주차된 빨간 트럭의 침대를 쳐다본다.',
|
146 |
+
'한 남자가 트럭을 보고 있다.',
|
147 |
+
'남자가 자고 있다.',
|
148 |
+
]
|
149 |
+
embeddings = model.encode(sentences)
|
150 |
+
print(embeddings.shape)
|
151 |
+
# [3, 768]
|
152 |
+
|
153 |
+
# Get the similarity scores for the embeddings
|
154 |
+
similarities = model.similarity(embeddings, embeddings)
|
155 |
+
print(similarities.shape)
|
156 |
+
# [3, 3]
|
157 |
+
```
|
158 |
+
|
159 |
+
<!--
|
160 |
+
### Direct Usage (Transformers)
|
161 |
+
|
162 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
163 |
+
|
164 |
+
</details>
|
165 |
+
-->
|
166 |
+
|
167 |
+
<!--
|
168 |
+
### Downstream Usage (Sentence Transformers)
|
169 |
+
|
170 |
+
You can finetune this model on your own dataset.
|
171 |
+
|
172 |
+
<details><summary>Click to expand</summary>
|
173 |
+
|
174 |
+
</details>
|
175 |
+
-->
|
176 |
+
|
177 |
+
<!--
|
178 |
+
### Out-of-Scope Use
|
179 |
+
|
180 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
181 |
+
-->
|
182 |
+
|
183 |
+
## Evaluation
|
184 |
+
|
185 |
+
### Metrics
|
186 |
+
|
187 |
+
#### Semantic Similarity
|
188 |
+
* Dataset: `sts-dev`
|
189 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
190 |
+
|
191 |
+
| Metric | Value |
|
192 |
+
|:-------------------|:-----------|
|
193 |
+
| pearson_cosine | 0.8611 |
|
194 |
+
| spearman_cosine | 0.8634 |
|
195 |
+
| pearson_manhattan | 0.8545 |
|
196 |
+
| spearman_manhattan | 0.8591 |
|
197 |
+
| pearson_euclidean | 0.8549 |
|
198 |
+
| spearman_euclidean | 0.8593 |
|
199 |
+
| pearson_dot | 0.8332 |
|
200 |
+
| spearman_dot | 0.8324 |
|
201 |
+
| pearson_max | 0.8611 |
|
202 |
+
| **spearman_max** | **0.8634** |
|
203 |
+
|
204 |
+
<!--
|
205 |
+
## Bias, Risks and Limitations
|
206 |
+
|
207 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
208 |
+
-->
|
209 |
+
|
210 |
+
<!--
|
211 |
+
### Recommendations
|
212 |
+
|
213 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
214 |
+
-->
|
215 |
+
|
216 |
+
## Training Details
|
217 |
+
|
218 |
+
### Training Datasets
|
219 |
+
|
220 |
+
#### Unnamed Dataset
|
221 |
+
|
222 |
+
|
223 |
+
* Size: 568,640 training samples
|
224 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
|
225 |
+
* Approximate statistics based on the first 1000 samples:
|
226 |
+
| | sentence_0 | sentence_1 | sentence_2 |
|
227 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
228 |
+
| type | string | string | string |
|
229 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 19.18 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 18.31 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.58 tokens</li><li>max: 54 tokens</li></ul> |
|
230 |
+
* Samples:
|
231 |
+
| sentence_0 | sentence_1 | sentence_2 |
|
232 |
+
|:----------------------------------------|:-------------------------------------------------|:--------------------------------------|
|
233 |
+
| <code>발생 부하가 함께 5% 적습니다.</code> | <code>발생 부하의 5% 감소와 함께 11.</code> | <code>발생 부하가 5% 증가합니다.</code> |
|
234 |
+
| <code>어떤 행사를 위해 음식과 옷을 배급하는 여성들.</code> | <code>여성들은 음식과 옷을 나눠줌으로써 난민들을 돕고 있다.</code> | <code>여자들이 사막에서 오토바이를 운전하고 있다.</code> |
|
235 |
+
| <code>어린 아이들은 그 지식을 얻을 필요가 있다.</code> | <code>응, 우리 젊은이들 중 많은 사람들이 그걸 배워야 할 것 같아.</code> | <code>젊은 사람들은 배울 필요가 없다.</code> |
|
236 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
237 |
+
```json
|
238 |
+
{
|
239 |
+
"scale": 20.0,
|
240 |
+
"similarity_fct": "cos_sim"
|
241 |
+
}
|
242 |
+
```
|
243 |
+
|
244 |
+
#### Unnamed Dataset
|
245 |
+
|
246 |
+
|
247 |
+
* Size: 5,778 training samples
|
248 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
249 |
+
* Approximate statistics based on the first 1000 samples:
|
250 |
+
| | sentence_0 | sentence_1 | label |
|
251 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
252 |
+
| type | string | string | float |
|
253 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 16.98 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 16.88 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
|
254 |
+
* Samples:
|
255 |
+
| sentence_0 | sentence_1 | label |
|
256 |
+
|:---------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|:--------------------------------|
|
257 |
+
| <code>다우존스 산업평균지수는 9011.53으로 98.32, 즉 약 1.1% 하락했다.</code> | <code>다우존스 산업평균지수는 9,011.53으로 98.32포인트 하락했다.</code> | <code>0.6799999999999999</code> |
|
258 |
+
| <code>미군 특수부대는 콜롬비아에서 두 번째로 큰 유전에서 원유를 운반하는 파이프라인을 보호하기 위해 이 지역의 군사기지에서 콜롬비아 군인들을 훈련시키고 있다.</code> | <code>미군 특수부대는 이 지역의 군사기지에서 콜롬비아 군인들을 훈련시켜 파이프라인을 보호하고 있다.</code> | <code>0.64</code> |
|
259 |
+
| <code>한 사람은 또한 영어/터키어 사전에서 난민이라는 단어를 지적했다.</code> | <code>한 남자는 영어-터키 사전을 휘두르고 "피난민"이라는 단어를 가리켰다.</code> | <code>0.76</code> |
|
260 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
261 |
+
```json
|
262 |
+
{
|
263 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
264 |
+
}
|
265 |
+
```
|
266 |
+
|
267 |
+
### Training Hyperparameters
|
268 |
+
#### Non-Default Hyperparameters
|
269 |
+
|
270 |
+
- `eval_strategy`: steps
|
271 |
+
- `num_train_epochs`: 5
|
272 |
+
- `batch_sampler`: no_duplicates
|
273 |
+
- `multi_dataset_batch_sampler`: round_robin
|
274 |
+
|
275 |
+
#### All Hyperparameters
|
276 |
+
<details><summary>Click to expand</summary>
|
277 |
+
|
278 |
+
- `overwrite_output_dir`: False
|
279 |
+
- `do_predict`: False
|
280 |
+
- `eval_strategy`: steps
|
281 |
+
- `prediction_loss_only`: True
|
282 |
+
- `per_device_train_batch_size`: 8
|
283 |
+
- `per_device_eval_batch_size`: 8
|
284 |
+
- `per_gpu_train_batch_size`: None
|
285 |
+
- `per_gpu_eval_batch_size`: None
|
286 |
+
- `gradient_accumulation_steps`: 1
|
287 |
+
- `eval_accumulation_steps`: None
|
288 |
+
- `learning_rate`: 5e-05
|
289 |
+
- `weight_decay`: 0.0
|
290 |
+
- `adam_beta1`: 0.9
|
291 |
+
- `adam_beta2`: 0.999
|
292 |
+
- `adam_epsilon`: 1e-08
|
293 |
+
- `max_grad_norm`: 1
|
294 |
+
- `num_train_epochs`: 5
|
295 |
+
- `max_steps`: -1
|
296 |
+
- `lr_scheduler_type`: linear
|
297 |
+
- `lr_scheduler_kwargs`: {}
|
298 |
+
- `warmup_ratio`: 0.0
|
299 |
+
- `warmup_steps`: 0
|
300 |
+
- `log_level`: passive
|
301 |
+
- `log_level_replica`: warning
|
302 |
+
- `log_on_each_node`: True
|
303 |
+
- `logging_nan_inf_filter`: True
|
304 |
+
- `save_safetensors`: True
|
305 |
+
- `save_on_each_node`: False
|
306 |
+
- `save_only_model`: False
|
307 |
+
- `restore_callback_states_from_checkpoint`: False
|
308 |
+
- `no_cuda`: False
|
309 |
+
- `use_cpu`: False
|
310 |
+
- `use_mps_device`: False
|
311 |
+
- `seed`: 42
|
312 |
+
- `data_seed`: None
|
313 |
+
- `jit_mode_eval`: False
|
314 |
+
- `use_ipex`: False
|
315 |
+
- `bf16`: False
|
316 |
+
- `fp16`: False
|
317 |
+
- `fp16_opt_level`: O1
|
318 |
+
- `half_precision_backend`: auto
|
319 |
+
- `bf16_full_eval`: False
|
320 |
+
- `fp16_full_eval`: False
|
321 |
+
- `tf32`: None
|
322 |
+
- `local_rank`: 0
|
323 |
+
- `ddp_backend`: None
|
324 |
+
- `tpu_num_cores`: None
|
325 |
+
- `tpu_metrics_debug`: False
|
326 |
+
- `debug`: []
|
327 |
+
- `dataloader_drop_last`: False
|
328 |
+
- `dataloader_num_workers`: 0
|
329 |
+
- `dataloader_prefetch_factor`: None
|
330 |
+
- `past_index`: -1
|
331 |
+
- `disable_tqdm`: False
|
332 |
+
- `remove_unused_columns`: True
|
333 |
+
- `label_names`: None
|
334 |
+
- `load_best_model_at_end`: False
|
335 |
+
- `ignore_data_skip`: False
|
336 |
+
- `fsdp`: []
|
337 |
+
- `fsdp_min_num_params`: 0
|
338 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
339 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
340 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
341 |
+
- `deepspeed`: None
|
342 |
+
- `label_smoothing_factor`: 0.0
|
343 |
+
- `optim`: adamw_torch
|
344 |
+
- `optim_args`: None
|
345 |
+
- `adafactor`: False
|
346 |
+
- `group_by_length`: False
|
347 |
+
- `length_column_name`: length
|
348 |
+
- `ddp_find_unused_parameters`: None
|
349 |
+
- `ddp_bucket_cap_mb`: None
|
350 |
+
- `ddp_broadcast_buffers`: False
|
351 |
+
- `dataloader_pin_memory`: True
|
352 |
+
- `dataloader_persistent_workers`: False
|
353 |
+
- `skip_memory_metrics`: True
|
354 |
+
- `use_legacy_prediction_loop`: False
|
355 |
+
- `push_to_hub`: False
|
356 |
+
- `resume_from_checkpoint`: None
|
357 |
+
- `hub_model_id`: None
|
358 |
+
- `hub_strategy`: every_save
|
359 |
+
- `hub_private_repo`: False
|
360 |
+
- `hub_always_push`: False
|
361 |
+
- `gradient_checkpointing`: False
|
362 |
+
- `gradient_checkpointing_kwargs`: None
|
363 |
+
- `include_inputs_for_metrics`: False
|
364 |
+
- `eval_do_concat_batches`: True
|
365 |
+
- `fp16_backend`: auto
|
366 |
+
- `push_to_hub_model_id`: None
|
367 |
+
- `push_to_hub_organization`: None
|
368 |
+
- `mp_parameters`:
|
369 |
+
- `auto_find_batch_size`: False
|
370 |
+
- `full_determinism`: False
|
371 |
+
- `torchdynamo`: None
|
372 |
+
- `ray_scope`: last
|
373 |
+
- `ddp_timeout`: 1800
|
374 |
+
- `torch_compile`: False
|
375 |
+
- `torch_compile_backend`: None
|
376 |
+
- `torch_compile_mode`: None
|
377 |
+
- `dispatch_batches`: None
|
378 |
+
- `split_batches`: None
|
379 |
+
- `include_tokens_per_second`: False
|
380 |
+
- `include_num_input_tokens_seen`: False
|
381 |
+
- `neftune_noise_alpha`: None
|
382 |
+
- `optim_target_modules`: None
|
383 |
+
- `batch_eval_metrics`: False
|
384 |
+
- `batch_sampler`: no_duplicates
|
385 |
+
- `multi_dataset_batch_sampler`: round_robin
|
386 |
+
|
387 |
+
</details>
|
388 |
+
|
389 |
+
### Training Logs
|
390 |
+
| Epoch | Step | Training Loss | sts-dev_spearman_max |
|
391 |
+
|:------:|:----:|:-------------:|:--------------------:|
|
392 |
+
| 0.3458 | 500 | 0.4169 | - |
|
393 |
+
| 0.6916 | 1000 | 0.2952 | 0.8533 |
|
394 |
+
| 1.0007 | 1447 | - | 0.8581 |
|
395 |
+
| 1.0367 | 1500 | 0.2744 | - |
|
396 |
+
| 1.3824 | 2000 | 0.1415 | 0.8520 |
|
397 |
+
| 1.7282 | 2500 | 0.0886 | - |
|
398 |
+
| 2.0007 | 2894 | - | 0.8634 |
|
399 |
+
|
400 |
+
|
401 |
+
### Framework Versions
|
402 |
+
- Python: 3.11.9
|
403 |
+
- Sentence Transformers: 3.0.1
|
404 |
+
- Transformers: 4.41.2
|
405 |
+
- PyTorch: 2.2.2+cu121
|
406 |
+
- Accelerate: 0.31.0
|
407 |
+
- Datasets: 2.20.0
|
408 |
+
- Tokenizers: 0.19.1
|
409 |
+
|
410 |
+
## Citation
|
411 |
+
|
412 |
+
### BibTeX
|
413 |
+
|
414 |
+
#### Sentence Transformers
|
415 |
+
```bibtex
|
416 |
+
@inproceedings{reimers-2019-sentence-bert,
|
417 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
418 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
419 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
420 |
+
month = "11",
|
421 |
+
year = "2019",
|
422 |
+
publisher = "Association for Computational Linguistics",
|
423 |
+
url = "https://arxiv.org/abs/1908.10084",
|
424 |
+
}
|
425 |
+
```
|
426 |
+
|
427 |
+
#### MultipleNegativesRankingLoss
|
428 |
+
```bibtex
|
429 |
+
@misc{henderson2017efficient,
|
430 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
431 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
432 |
+
year={2017},
|
433 |
+
eprint={1705.00652},
|
434 |
+
archivePrefix={arXiv},
|
435 |
+
primaryClass={cs.CL}
|
436 |
+
}
|
437 |
+
```
|
438 |
+
|
439 |
+
<!--
|
440 |
+
## Glossary
|
441 |
+
|
442 |
+
*Clearly define terms in order to be accessible across audiences.*
|
443 |
+
-->
|
444 |
+
|
445 |
+
<!--
|
446 |
+
## Model Card Authors
|
447 |
+
|
448 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
449 |
+
-->
|
450 |
+
|
451 |
+
<!--
|
452 |
+
## Model Card Contact
|
453 |
+
|
454 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
455 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "klue/roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.41.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.2.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8146ba7f9363220d673a6d2f8f0509511acbd9ab4f66893bf506a79043bb0e57
|
3 |
+
size 442494816
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
similarity_evaluation_sts-test_results.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
-1,-1,0.8332760698894233,0.8369215224141134,0.8288968531957703,0.8325243384920357,0.8290760198503802,0.8328332559960856,0.8118611223205467,0.8081681790828251
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"model_max_length": 128,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"strip_accents": null,
|
56 |
+
"tokenize_chinese_chars": true,
|
57 |
+
"tokenizer_class": "BertTokenizer",
|
58 |
+
"unk_token": "[UNK]"
|
59 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|