{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f457a001c60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f457a001cf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f457a001d80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f457a001e10>", "_build": "<function ActorCriticPolicy._build at 0x7f457a001ea0>", "forward": "<function ActorCriticPolicy.forward at 0x7f457a001f30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f457a001fc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f457a002050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f457a0020e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f457a002170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f457a002200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f457a002290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f457a005440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687335690489819151, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqMab6Swn8/uXK6vhp4ML8cegy/I9dZvgAAAAAAAAAAgLCSPfa9SLzw9di9reVoPWFxBj2jiA07AACAPwAAgD9mWAO8Sf2xP5uy370jD1a+d8y+O8AIBbwAAAAAAAAAANPlFL51q60/6gUMv5p+0L6+GZa+LY/ZvgAAAAAAAAAAZqHNvJ9gs7uIprI9K/gFPfpfRL1FO909AACAPwAAgD/qc6S+T/VtP1Zgqb3FHDm/CH4/vy8Axz0AAAAAAAAAADOzNL3s55k62qpgPW87JTMF69c6vXMuMwAAgD8AAIA/gPGXvVKusT4jtWk9J4Aov8uBsL3yMoQ9AAAAAAAAAACafRU8H9O6u2+JAL5a9QE95+WqO5bX/T0AAIA/AACAPzNMRD3WPus+u3wNPdyvR7+wKOk9/jZfvAAAAAAAAAAAAECmuw4Xtz/6YIO+R/PWPm3Ivjsyo2s9AAAAAAAAAAAAQOi514BVu8MmN77ng6U6MtqOPGLu1LsAAIA/AACAP+YSa73QS7Q/y5zuvr7gEr7fBRS9DhiNvgAAAAAAAAAAesApvqodLj6qZ2M+7PMfv5F3tr1gVlc+AAAAAAAAAAAzs6865FW0PxADCz6Bf7q99bDKugvo+7wAAAAAAAAAALNHHz24dv+5eeNHvlpXHj10+he6kz0HvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHQrfO6d1+2MAWyUS6SMAXSUR0DQsnym1pj+dX2UKGgGR0ByLx87ZFodaAdLhGgIR0DQt1bCWNWEdX2UKGgGR0BweKsvIwM6aAdLnWgIR0DQt2EEC/47dX2UKGgGR0BzVCxZ+x4ZaAdLq2gIR0DQt2Nh8YygdX2UKGgGR0ByFk31jAi3aAdLimgIR0DQt2rupjtpdX2UKGgGR0BxBTQY1pCbaAdLsmgIR0DQt2sMqjJudX2UKGgGR0BxfsoH9m6HaAdLqWgIR0DQt2reZXuFdX2UKGgGR0Bz0s9X9zfaaAdLvGgIR0DQt2ucG1QZdX2UKGgGR0BzlMZGax5caAdLs2gIR0DQt3JPIn0DdX2UKGgGR0By6guK4x1xaAdLn2gIR0DQt3bSofjkdX2UKGgGR0BwQJHxz7uVaAdLjWgIR0DQt3x9a2WqdX2UKGgGR0BzbRwWFev7aAdLm2gIR0DQt33wZwXJdX2UKGgGR0ByA7CtRvWIaAdLmmgIR0DQt38QVbiZdX2UKGgGR0Byh/NW2gFpaAdLmmgIR0DQt4Ga2F37dX2UKGgGR0By9X+MqBmPaAdLxGgIR0DQt4Mckt2+dX2UKGgGR0Bhb77qIJqqaAdN6ANoCEdA0LeDLn9vTHV9lChoBkdAcYuciGFi8WgHS6loCEdA0LeRIKtxMnV9lChoBkdAcmHbt7a7E2gHS8loCEdA0LeVGGmDUXV9lChoBkdAcuA1ZTyau2gHS6NoCEdA0LeXyy2QXHV9lChoBkdAb+QkJrtVrGgHS51oCEdA0LeX34sVcnV9lChoBkdAccCLFn7HhmgHS4loCEdA0LeYdOZb6nV9lChoBkdAQuwqur6tT2gHS1NoCEdA0LebvF3pwHV9lChoBkdAb9kzMRpUP2gHS5ZoCEdA0LecQdS2pnV9lChoBkdAcjUrYXfqHGgHS51oCEdA0Leea3ZwoHV9lChoBkdAcz64W1twaWgHS7FoCEdA0Lejz2OAAnV9lChoBkdASkOTot+TeWgHS1hoCEdA0Ler4m1IAnV9lChoBkdAciVWcBltj2gHS71oCEdA0LeuBmf5DnV9lChoBkdAcPpMFUyYX2gHS7NoCEdA0Lez0BwMpnV9lChoBkdAc6sPqLS/kGgHS8JoCEdA0LezxYJVsHV9lChoBkdAbsDBFd9lVmgHS7RoCEdA0Le37kXDWXV9lChoBkdAcmvZezD4xmgHS7ZoCEdA0Le6MM7U5XV9lChoBkdAc2RC+De0omgHS8FoCEdA0Le6eHzpYHV9lChoBkdAc8H5iExqPGgHS8hoCEdA0Le7uNxVAHV9lChoBkdAcSCu5jH4oWgHS6ZoCEdA0LfI4N7SiXV9lChoBkdAcRY4UN8VpWgHS6NoCEdA0LfKsKsuF3V9lChoBkdAcATZg5R0l2gHS5loCEdA0LfOQmNR33V9lChoBkdAb4Xu1ndwemgHS6NoCEdA0LfOuJUHZHV9lChoBkdAdCyXe3x4IWgHS8hoCEdA0LfW336AOXV9lChoBkdATCxIczZYgmgHS2doCEdA0LfbIJ7b+XV9lChoBkdAdB4Dpkf9xmgHS9VoCEdA0LfawPy08nV9lChoBkdAcQ6NfPX05GgHS7NoCEdA0Lfcrwe/6HV9lChoBkdAcs4e7tiQT2gHS6BoCEdA0Lfe9wFTvXV9lChoBkdAc8nYoy9EkWgHS95oCEdA0Lfh4/eLvXV9lChoBkdAccLt2LYPG2gHS6hoCEdA0LfjuGsV+XV9lChoBkdAcJQjqOcUd2gHS5toCEdA0LflHH3lCHV9lChoBkdAczJ3PRiPQ2gHS59oCEdA0LfqQU5+6XV9lChoBkdAcyHEit7rs2gHS7toCEdA0LfusVclgXV9lChoBkdAcsQMr3CbdGgHS7poCEdA0Lf0a4tpVXV9lChoBkdAc3O3Sro4dmgHS8NoCEdA0Lf4fZmI03V9lChoBkdAce4FSbYsd2gHS4poCEdA0Lf5K77KrHV9lChoBkdAca7fgrH2iGgHS51oCEdA0Lf7HZK3/nV9lChoBkdAc5JBSDRMOGgHS7VoCEdA0LgGdfb9InV9lChoBkdAcpuUwztTk2gHS4doCEdA0LgGQVsUI3V9lChoBkdAc/O9ugpSaWgHS8loCEdA0LgHakhzNnV9lChoBkdAcTFF49ovjGgHS5hoCEdA0LgNRVIZqHV9lChoBkdAcXKH+ZPVNGgHS6toCEdA0LgO5S3sonV9lChoBkdAcWa5AhStNmgHS5loCEdA0LgQcpsoD3V9lChoBkdAcsSyJbdJrmgHS7VoCEdA0LgScs189nV9lChoBkdAcCC+IdlunGgHS5VoCEdA0LgShm5DqnV9lChoBkdAcOJbJfYzzmgHS8ZoCEdA0LgT/qxC6nV9lChoBkdAc9uLBKtga2gHS61oCEdA0LgYuxrzoXV9lChoBkdAOgCUcGTs6mgHS1doCEdA0LggrO7g9HV9lChoBkdAcqBXZGrjpGgHS4JoCEdA0LghMUh3aHV9lChoBkdARPE5Ke05VGgHS1loCEdA0LgiRsuWbHV9lChoBkdAcXDtMPBi1GgHS5JoCEdA0LglZnctXnV9lChoBkdAc16mPo3aSWgHS8FoCEdA0LgqA0sOG3V9lChoBkdAc8fK3NLUTmgHS9BoCEdA0LgqEhJRO3V9lChoBkdAQu90q6OHWWgHS1RoCEdA0LgsV7hNunV9lChoBkdAccSWgezUqmgHS7poCEdA0Lgt4zJp4HV9lChoBkdAcbh+w1R+B2gHS8BoCEdA0Lg191U2k3V9lChoBkdAcpk7ZWaMJmgHS7ZoCEdA0Lg9QDFId3V9lChoBkdAcYt7DVH4GmgHS55oCEdA0LhC5mAbynV9lChoBkdAcNxYzSCvo2gHS5hoCEdA0LhCdrO7hHV9lChoBkdAcsZUliSaE2gHS65oCEdA0LhEyrPt2XV9lChoBkdAc5GekpI+XGgHS8doCEdA0LhLwazeGnV9lChoBkdAcVLnSfDk2mgHS6RoCEdA0LhMLRrrPnV9lChoBkdAc3DoqTbFj2gHS9NoCEdA0LhS+TeO43V9lChoBkdAcv7klu3tr2gHS6loCEdA0LhbWeHzpXV9lChoBkdAcHRWhysCDGgHS5hoCEdA0LhdCWeHz3V9lChoBkdAc2QQvpQk5mgHS7hoCEdA0Lhc+8oQWnV9lChoBkdAcrtP5pJwsGgHS75oCEdA0LhdxIre7HV9lChoBkdAcJSeVs1sL2gHS6NoCEdA0LheMHbAUXV9lChoBkdAclQcjqv/zmgHS8RoCEdA0LhfOPeYUnV9lChoBkdAc1wPhQ3xWmgHS69oCEdA0LhhbzbvgHV9lChoBkdAcylF8G9pRGgHS8doCEdA0Lhrxzq8lHV9lChoBkdAcXGAOrhismgHS6xoCEdA0LhsBkqc3HV9lChoBkdAckPsxfv4NGgHS4NoCEdA0Lhrv2oNu3V9lChoBkdAcqzIeo1k2GgHS6toCEdA0LhzFsYVI3V9lChoBkdAcp6ksSTQmmgHS6BoCEdA0Lh0+AVfu3V9lChoBkdARcblFMIu5GgHS1JoCEdA0Lh2AlOXV3V9lChoBkdAcQuQLux8lWgHS6loCEdA0Lh47Kq4pnV9lChoBkdAcjXbTtsvZmgHS5hoCEdA0LiAlb/wRXV9lChoBkdAcfNSPU8V6GgHS4JoCEdA0LiCFjurqHV9lChoBkdAcZxAbADaG2gHS7loCEdA0LiEYEnss3V9lChoBkdAbq2qTbFju2gHS4poCEdA0LiIwgDA8HV9lChoBkdAcKzjFAE+xGgHS59oCEdA0LiOEWqLj3V9lChoBkdAcZYuHerMkmgHS61oCEdA0LiR23KB/nV9lChoBkdAc2y5CF9KEmgHS+hoCEdA0LiTsjVx0nV9lChoBkdAcySnZkCmuWgHS7ZoCEdA0LiU8fFJhHV9lChoBkdAcX+BAOavzWgHS6doCEdA0LiVGzKLbnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1480, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |