KJan05 commited on
Commit
408ce71
·
1 Parent(s): feacd5f

Upload PPO LunarLander-v2 trained agent

Browse files
LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c910374e80279ce1bdb0148ec0d94af8219e167df608dac78d3af81c12275a3e
3
+ size 146747
LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1848234c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1848234ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1848234d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1848234dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1848234e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1848234ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1848234f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1848235000>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1848235090>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1848235120>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f18482351b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1848235240>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f184822ca80>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1507968,
25
+ "_total_timesteps": 1500000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1688208496613904321,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYGnrrjgjQ/a/urPKedkr7pFc47sggLvQAAAAAAAAAAGqJwvoI2iT/kngC/bb6svgwes75GKY++AAAAAAAAAAAAJAG9XVQFP88mEz1wC5i+QD/9vHP2eTwAAAAAAAAAAM1fjLyFm+u5H0onuJ6xrbKNXze7d6lHNwAAgD8AAIA/phbmvUQv7j3UEDk9RodYvtmhWbyeom89AAAAAAAAAACaYAo9fs+ZPyqXVT0rQLW+16pdPKaavzsAAAAAAAAAAMBFr732jEC6OQFGtDbuC68WG1q6SS+rMwAAgD8AAIA/Mylivc4ptz7XqrE9m3SOvnaaBTuyt+g7AAAAAAAAAABmHie8w8loum02MbgGtxezQJtKOugyTzcAAIA/AACAPwA9hzz2XFu61h4TtnodHrHQFL86jDU6NQAAgD8AAIA/ILMXvtKR6bulfe65y3cXuDVlQT1dyPw4AACAPwAAgD8AnJO9jnKGP9C7371sW7m+cbwMvuLPNz0AAAAAAAAAAM3b5rzhlo26I+1qMk2NerCd0QU7/ETIsgAAgD8AAIA/sy4SPjQtaT/MrZo80HHEvuVHAT5Tzne9AAAAAAAAAADNFPi7DahlPrhYUr0yLZy+XXgEvVezvLwAAAAAAAAAAGZGPbxbAcA9hgINviepZL7SmYO9nDaHvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.005311999999999983,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHsxEa2nbaMAWyUTRsBjAF0lEdAoD/VM495hXV9lChoBkdAcNt7HyVfNWgHTSMBaAhHQKA/9YaHbh51fZQoaAZHQG5LJbdJrcloB01XAWgIR0CgQAyUTtb+dX2UKGgGR0ByaCyon8baaAdNEwFoCEdAoEApHmRvFXV9lChoBkdAczEkC3gDR2gHTSwBaAhHQKBASubqhUR1fZQoaAZHQHFVqF7D2rZoB004AWgIR0CgQGdFvybydX2UKGgGR0BxWf1kDp1SaAdNCgFoCEdAoECdyo4uLHV9lChoBkdAcXe/+85CGGgHTS4BaAhHQKBArj6vaDh1fZQoaAZHQG2tR8D0UXZoB00UAWgIR0CgQYIX9BKMdX2UKGgGR0BxYnqB3A2yaAdNMgFoCEdAoEG2rwOOKnV9lChoBkdAcNhxUNrj52gHTQsBaAhHQKBCVTWGyop1fZQoaAZHQHLMQ4n4O+ZoB00+AWgIR0CgQr5ylvZRdX2UKGgGR0ByCJVo6CDmaAdNKgFoCEdAoELxNM495nV9lChoBkdAcw5A57w8XGgHTSQBaAhHQKBDXGOMl1N1fZQoaAZHQG9BoHC4z8BoB0vyaAhHQKBEeyFfzBh1fZQoaAZHQFBBHCXQdCFoB0v1aAhHQKBEoTdtVJd1fZQoaAZHQHMAoVdonKJoB00wAWgIR0CgRLq20AtGdX2UKGgGR0BvMmOjqOcUaAdNJAFoCEdAoEVtvGZNPHV9lChoBkdAcrlb1h9b5mgHTSABaAhHQKBF0ymALAp1fZQoaAZHQHJur8WKuSxoB00tAWgIR0CgRfPTw2ETdX2UKGgGR0Bw4KQU5+6RaAdNGAFoCEdAoEYJvWH1vnV9lChoBkdAbyvWuoxYaGgHTUABaAhHQKBGmdQO4G51fZQoaAZHQHKrYm1IAfdoB01HAWgIR0CgRxczyjHodX2UKGgGR0Bvm24gA6uGaAdNKgFoCEdAoEd7238XN3V9lChoBkdAbwNe7cwg1WgHTToBaAhHQKBIFeruIAR1fZQoaAZHQHDCkbDMvAZoB00iAWgIR0CgSE1K5CnhdX2UKGgGR0BuJD7IkqtpaAdNCQFoCEdAoEhzL8rI53V9lChoBkdAcG0W5Yoy9GgHTTIBaAhHQKBJCcPOIIp1fZQoaAZHQG6TJDu0CzVoB00rAWgIR0CgSZLZzxPPdX2UKGgGR0BxCV8YyfthaAdNHgFoCEdAoEp45myxA3V9lChoBkdAbUG4GUwBYGgHTRsBaAhHQKBKkMglnh91fZQoaAZHQHBJJUDMeOpoB0v5aAhHQKBLAx7AtWd1fZQoaAZHQHEF3dKujh1oB00SAWgIR0CgSyhCtzS1dX2UKGgGR0BvvYO2AoXsaAdNOAFoCEdAoEtIFJQLu3V9lChoBkdAcI8SOinHemgHTSsBaAhHQKBMQ4hllK91fZQoaAZHQHBAq3/givBoB00+AWgIR0CgTJeHrQgLdX2UKGgGR0BtRTLEDQqqaAdL/mgIR0CgTMmgBcRldX2UKGgGR0BXitZFG5MDaAdN6ANoCEdAoEz1JJ5E+nV9lChoBkdAcmrl3Qla82gHTUwBaAhHQKBNfHqeK9B1fZQoaAZHQHDMN3W4EwFoB01NAWgIR0CgTfI6CDmKdX2UKGgGR0BvvSro4dZJaAdNIwFoCEdAoE4HCj1wpHV9lChoBkdAcmRmEGqxT2gHTRIBaAhHQKBODpeu3c51fZQoaAZHQHICsiSq2jRoB00vAWgIR0CgTmRwAEMcdX2UKGgGR0BycnAymALBaAdNCQFoCEdAoFv/6ZYxL3V9lChoBkdAcgYpmmLtNWgHTTABaAhHQKBcWuh9LHx1fZQoaAZHQGuRg7gbZOBoB00WAWgIR0CgXk8RL9MsdX2UKGgGR0BwdGd6LOzIaAdNQgFoCEdAoF7fNPgvUXV9lChoBkdAcDUBO58Sf2gHTQ0BaAhHQKBffQcghbJ1fZQoaAZHQDxzTRYzSCxoB0v+aAhHQKBf6R15jYt1fZQoaAZHQG6GRYRujypoB00UAWgIR0CgYANrsSkCdX2UKGgGR0BwVziOvMbFaAdNFgFoCEdAoGBCjN6gNHV9lChoBkdAcWgxnnMdLmgHTRgBaAhHQKBhGehf0Ep1fZQoaAZHQG6JUbT+ee5oB00BAWgIR0CgYUIRIz3zdX2UKGgGR0By/jwMH8jzaAdNkwFoCEdAoGFsdBBzFXV9lChoBkdAcjxGnGbTdGgHTSUBaAhHQKBh4kYXO4Z1fZQoaAZHQHJDrPUrkKhoB029AWgIR0CgYi+v6j33dX2UKGgGR0ByGxaMaS9vaAdNNAFoCEdAoGJJlDneSHV9lChoBkdAcN9Gxlg+hWgHTRwBaAhHQKBjBvWpZOl1fZQoaAZHQHGYNoN/e+FoB01rAWgIR0CgY9KTSsr/dX2UKGgGR0Bwi88SwnpjaAdNVQFoCEdAoGPs7W/ag3V9lChoBkdAcckdVNpM6GgHTSIBaAhHQKBkizMRpUR1fZQoaAZHQHMDWuDBdldoB00vAWgIR0CgZUpaRp1zdX2UKGgGR0Bu3ipLmITHaAdNNwFoCEdAoGaVT3qRl3V9lChoBkdAcj7SZjQRgGgHTTYBaAhHQKBmqjynUDx1fZQoaAZHQHD9JeJHiFVoB00vAWgIR0CgZsf7rLQpdX2UKGgGR0Bw8gW2w3YMaAdNFQFoCEdAoGcRnFo+OnV9lChoBkdAcTwAy2x6fWgHTQ0BaAhHQKBnN1TR6Wx1fZQoaAZHQHEdlzEJjUdoB01DAWgIR0CgaFKoqCpWdX2UKGgGR0BvHI1pCa7VaAdNqAFoCEdAoGjaAUcn3XV9lChoBkdAcedvFFUhm2gHTTMBaAhHQKBpF0fYBeZ1fZQoaAZHQHE+BOUMXrNoB01EAWgIR0CgaVdxQzk7dX2UKGgGR0By5gAR02cbaAdNIQFoCEdAoGmAmCyyEHV9lChoBkdAcorirksBhmgHTQQBaAhHQKBpy90zTF51fZQoaAZHQHBL8aCL/CJoB00TAWgIR0CgagLCemNzdX2UKGgGR0Bx6PRSgoPTaAdNLQFoCEdAoGs76vaDf3V9lChoBkdAbsARvm5lOGgHTQ4BaAhHQKBrVm8M/hV1fZQoaAZHQGyJVzhgmZ5oB00MAWgIR0CgbKg3974SdX2UKGgGR0Bvv497ngYQaAdNEwFoCEdAoGymz2OAAnV9lChoBkdAbw/r0rbxmWgHTRYBaAhHQKBtK+0w8GN1fZQoaAZHQHJsFE7W/ahoB00TAWgIR0CgbUB7E5yVdX2UKGgGR0BxS7TiKiwjaAdNKgFoCEdAoG0+VX3g1nV9lChoBkdAUzdnuiN83WgHTegDaAhHQKBti00FbFF1fZQoaAZHQHFESmVJL/VoB00mAWgIR0Cgbnzg/C66dX2UKGgGR0BwWdrWRRuTaAdNBgFoCEdAoG84Ug0TDnV9lChoBkdAcniUAT7EYWgHTSsBaAhHQKBvkfywwCd1fZQoaAZHQGvX67ulXRxoB01HAWgIR0Cgb6xmK64EdX2UKGgGR0ByFnYBeXzEaAdNPgFoCEdAoG+129tdiXV9lChoBkdAcY1schkiEGgHTRQBaAhHQKBvxri2lVN1fZQoaAZHQG8onNHH3lFoB00UAWgIR0CgcNlpGnXNdX2UKGgGR0Bxdg88s+V1aAdNawFoCEdAoHDkBsANonV9lChoBkdAcn9PszEaVGgHTTsBaAhHQKBxrCD28I11fZQoaAZHQHKaD0UXYUZoB00GAWgIR0Cgcczm4iHJdX2UKGgGR0BtMlYISlFdaAdNCQFoCEdAoHJeRHPNV3V9lChoBkdAcQ+BFd9lVmgHTSYBaAhHQKByatp22Xt1fZQoaAZHQHFnqebutwJoB01FAWgIR0Cgc/l8PWhAdX2UKGgGR0ByT18D0UXYaAdNUQFoCEdAoHTXCbc453V9lChoBkdAcTolr/Khc2gHTSwBaAhHQKB1QxYaHbh1fZQoaAZHQHFozRYzSCxoB02QAWgIR0CgdjhZ6lchdX2UKGgGR0ByxtBdD6WPaAdNFQFoCEdAoHZpjJ+2E3V9lChoBkdAcEenjhky12gHTRwBaAhHQKB2hm9QGfR1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 308,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1224,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2a5194c9e150f4ace442c8385283dcc736fe90185d112a4c58aebf9e2e9a2cf
3
+ size 87929
LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a68d2bf233bf7219356921592e8b0c5a737d6986dd9b5bae970308437f1a2ab
3
+ size 43329
LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 274.83 +/- 14.06
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1848234c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1848234ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1848234d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1848234dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f1848234e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f1848234ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1848234f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1848235000>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1848235090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1848235120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f18482351b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1848235240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f184822ca80>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1507968, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688208496613904321, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYGnrrjgjQ/a/urPKedkr7pFc47sggLvQAAAAAAAAAAGqJwvoI2iT/kngC/bb6svgwes75GKY++AAAAAAAAAAAAJAG9XVQFP88mEz1wC5i+QD/9vHP2eTwAAAAAAAAAAM1fjLyFm+u5H0onuJ6xrbKNXze7d6lHNwAAgD8AAIA/phbmvUQv7j3UEDk9RodYvtmhWbyeom89AAAAAAAAAACaYAo9fs+ZPyqXVT0rQLW+16pdPKaavzsAAAAAAAAAAMBFr732jEC6OQFGtDbuC68WG1q6SS+rMwAAgD8AAIA/Mylivc4ptz7XqrE9m3SOvnaaBTuyt+g7AAAAAAAAAABmHie8w8loum02MbgGtxezQJtKOugyTzcAAIA/AACAPwA9hzz2XFu61h4TtnodHrHQFL86jDU6NQAAgD8AAIA/ILMXvtKR6bulfe65y3cXuDVlQT1dyPw4AACAPwAAgD8AnJO9jnKGP9C7371sW7m+cbwMvuLPNz0AAAAAAAAAAM3b5rzhlo26I+1qMk2NerCd0QU7/ETIsgAAgD8AAIA/sy4SPjQtaT/MrZo80HHEvuVHAT5Tzne9AAAAAAAAAADNFPi7DahlPrhYUr0yLZy+XXgEvVezvLwAAAAAAAAAAGZGPbxbAcA9hgINviepZL7SmYO9nDaHvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.005311999999999983, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHsxEa2nbaMAWyUTRsBjAF0lEdAoD/VM495hXV9lChoBkdAcNt7HyVfNWgHTSMBaAhHQKA/9YaHbh51fZQoaAZHQG5LJbdJrcloB01XAWgIR0CgQAyUTtb+dX2UKGgGR0ByaCyon8baaAdNEwFoCEdAoEApHmRvFXV9lChoBkdAczEkC3gDR2gHTSwBaAhHQKBASubqhUR1fZQoaAZHQHFVqF7D2rZoB004AWgIR0CgQGdFvybydX2UKGgGR0BxWf1kDp1SaAdNCgFoCEdAoECdyo4uLHV9lChoBkdAcXe/+85CGGgHTS4BaAhHQKBArj6vaDh1fZQoaAZHQG2tR8D0UXZoB00UAWgIR0CgQYIX9BKMdX2UKGgGR0BxYnqB3A2yaAdNMgFoCEdAoEG2rwOOKnV9lChoBkdAcNhxUNrj52gHTQsBaAhHQKBCVTWGyop1fZQoaAZHQHLMQ4n4O+ZoB00+AWgIR0CgQr5ylvZRdX2UKGgGR0ByCJVo6CDmaAdNKgFoCEdAoELxNM495nV9lChoBkdAcw5A57w8XGgHTSQBaAhHQKBDXGOMl1N1fZQoaAZHQG9BoHC4z8BoB0vyaAhHQKBEeyFfzBh1fZQoaAZHQFBBHCXQdCFoB0v1aAhHQKBEoTdtVJd1fZQoaAZHQHMAoVdonKJoB00wAWgIR0CgRLq20AtGdX2UKGgGR0BvMmOjqOcUaAdNJAFoCEdAoEVtvGZNPHV9lChoBkdAcrlb1h9b5mgHTSABaAhHQKBF0ymALAp1fZQoaAZHQHJur8WKuSxoB00tAWgIR0CgRfPTw2ETdX2UKGgGR0Bw4KQU5+6RaAdNGAFoCEdAoEYJvWH1vnV9lChoBkdAbyvWuoxYaGgHTUABaAhHQKBGmdQO4G51fZQoaAZHQHKrYm1IAfdoB01HAWgIR0CgRxczyjHodX2UKGgGR0Bvm24gA6uGaAdNKgFoCEdAoEd7238XN3V9lChoBkdAbwNe7cwg1WgHTToBaAhHQKBIFeruIAR1fZQoaAZHQHDCkbDMvAZoB00iAWgIR0CgSE1K5CnhdX2UKGgGR0BuJD7IkqtpaAdNCQFoCEdAoEhzL8rI53V9lChoBkdAcG0W5Yoy9GgHTTIBaAhHQKBJCcPOIIp1fZQoaAZHQG6TJDu0CzVoB00rAWgIR0CgSZLZzxPPdX2UKGgGR0BxCV8YyfthaAdNHgFoCEdAoEp45myxA3V9lChoBkdAbUG4GUwBYGgHTRsBaAhHQKBKkMglnh91fZQoaAZHQHBJJUDMeOpoB0v5aAhHQKBLAx7AtWd1fZQoaAZHQHEF3dKujh1oB00SAWgIR0CgSyhCtzS1dX2UKGgGR0BvvYO2AoXsaAdNOAFoCEdAoEtIFJQLu3V9lChoBkdAcI8SOinHemgHTSsBaAhHQKBMQ4hllK91fZQoaAZHQHBAq3/givBoB00+AWgIR0CgTJeHrQgLdX2UKGgGR0BtRTLEDQqqaAdL/mgIR0CgTMmgBcRldX2UKGgGR0BXitZFG5MDaAdN6ANoCEdAoEz1JJ5E+nV9lChoBkdAcmrl3Qla82gHTUwBaAhHQKBNfHqeK9B1fZQoaAZHQHDMN3W4EwFoB01NAWgIR0CgTfI6CDmKdX2UKGgGR0BvvSro4dZJaAdNIwFoCEdAoE4HCj1wpHV9lChoBkdAcmRmEGqxT2gHTRIBaAhHQKBODpeu3c51fZQoaAZHQHICsiSq2jRoB00vAWgIR0CgTmRwAEMcdX2UKGgGR0BycnAymALBaAdNCQFoCEdAoFv/6ZYxL3V9lChoBkdAcgYpmmLtNWgHTTABaAhHQKBcWuh9LHx1fZQoaAZHQGuRg7gbZOBoB00WAWgIR0CgXk8RL9MsdX2UKGgGR0BwdGd6LOzIaAdNQgFoCEdAoF7fNPgvUXV9lChoBkdAcDUBO58Sf2gHTQ0BaAhHQKBffQcghbJ1fZQoaAZHQDxzTRYzSCxoB0v+aAhHQKBf6R15jYt1fZQoaAZHQG6GRYRujypoB00UAWgIR0CgYANrsSkCdX2UKGgGR0BwVziOvMbFaAdNFgFoCEdAoGBCjN6gNHV9lChoBkdAcWgxnnMdLmgHTRgBaAhHQKBhGehf0Ep1fZQoaAZHQG6JUbT+ee5oB00BAWgIR0CgYUIRIz3zdX2UKGgGR0By/jwMH8jzaAdNkwFoCEdAoGFsdBBzFXV9lChoBkdAcjxGnGbTdGgHTSUBaAhHQKBh4kYXO4Z1fZQoaAZHQHJDrPUrkKhoB029AWgIR0CgYi+v6j33dX2UKGgGR0ByGxaMaS9vaAdNNAFoCEdAoGJJlDneSHV9lChoBkdAcN9Gxlg+hWgHTRwBaAhHQKBjBvWpZOl1fZQoaAZHQHGYNoN/e+FoB01rAWgIR0CgY9KTSsr/dX2UKGgGR0Bwi88SwnpjaAdNVQFoCEdAoGPs7W/ag3V9lChoBkdAcckdVNpM6GgHTSIBaAhHQKBkizMRpUR1fZQoaAZHQHMDWuDBdldoB00vAWgIR0CgZUpaRp1zdX2UKGgGR0Bu3ipLmITHaAdNNwFoCEdAoGaVT3qRl3V9lChoBkdAcj7SZjQRgGgHTTYBaAhHQKBmqjynUDx1fZQoaAZHQHD9JeJHiFVoB00vAWgIR0CgZsf7rLQpdX2UKGgGR0Bw8gW2w3YMaAdNFQFoCEdAoGcRnFo+OnV9lChoBkdAcTwAy2x6fWgHTQ0BaAhHQKBnN1TR6Wx1fZQoaAZHQHEdlzEJjUdoB01DAWgIR0CgaFKoqCpWdX2UKGgGR0BvHI1pCa7VaAdNqAFoCEdAoGjaAUcn3XV9lChoBkdAcedvFFUhm2gHTTMBaAhHQKBpF0fYBeZ1fZQoaAZHQHE+BOUMXrNoB01EAWgIR0CgaVdxQzk7dX2UKGgGR0By5gAR02cbaAdNIQFoCEdAoGmAmCyyEHV9lChoBkdAcorirksBhmgHTQQBaAhHQKBpy90zTF51fZQoaAZHQHBL8aCL/CJoB00TAWgIR0CgagLCemNzdX2UKGgGR0Bx6PRSgoPTaAdNLQFoCEdAoGs76vaDf3V9lChoBkdAbsARvm5lOGgHTQ4BaAhHQKBrVm8M/hV1fZQoaAZHQGyJVzhgmZ5oB00MAWgIR0CgbKg3974SdX2UKGgGR0Bvv497ngYQaAdNEwFoCEdAoGymz2OAAnV9lChoBkdAbw/r0rbxmWgHTRYBaAhHQKBtK+0w8GN1fZQoaAZHQHJsFE7W/ahoB00TAWgIR0CgbUB7E5yVdX2UKGgGR0BxS7TiKiwjaAdNKgFoCEdAoG0+VX3g1nV9lChoBkdAUzdnuiN83WgHTegDaAhHQKBti00FbFF1fZQoaAZHQHFESmVJL/VoB00mAWgIR0Cgbnzg/C66dX2UKGgGR0BwWdrWRRuTaAdNBgFoCEdAoG84Ug0TDnV9lChoBkdAcniUAT7EYWgHTSsBaAhHQKBvkfywwCd1fZQoaAZHQGvX67ulXRxoB01HAWgIR0Cgb6xmK64EdX2UKGgGR0ByFnYBeXzEaAdNPgFoCEdAoG+129tdiXV9lChoBkdAcY1schkiEGgHTRQBaAhHQKBvxri2lVN1fZQoaAZHQG8onNHH3lFoB00UAWgIR0CgcNlpGnXNdX2UKGgGR0Bxdg88s+V1aAdNawFoCEdAoHDkBsANonV9lChoBkdAcn9PszEaVGgHTTsBaAhHQKBxrCD28I11fZQoaAZHQHKaD0UXYUZoB00GAWgIR0Cgcczm4iHJdX2UKGgGR0BtMlYISlFdaAdNCQFoCEdAoHJeRHPNV3V9lChoBkdAcQ+BFd9lVmgHTSYBaAhHQKByatp22Xt1fZQoaAZHQHFnqebutwJoB01FAWgIR0Cgc/l8PWhAdX2UKGgGR0ByT18D0UXYaAdNUQFoCEdAoHTXCbc453V9lChoBkdAcTolr/Khc2gHTSwBaAhHQKB1QxYaHbh1fZQoaAZHQHFozRYzSCxoB02QAWgIR0CgdjhZ6lchdX2UKGgGR0ByxtBdD6WPaAdNFQFoCEdAoHZpjJ+2E3V9lChoBkdAcEenjhky12gHTRwBaAhHQKB2hm9QGfR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 308, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1224, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (159 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 274.83312553017197, "std_reward": 14.06430441466702, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-01T11:23:18.889248"}