File size: 6,825 Bytes
2668e71 436ee07 2668e71 436ee07 2668e71 436ee07 2668e71 436ee07 2668e71 cd3c88e 2668e71 cd3c88e 2668e71 436ee07 2668e71 436ee07 2668e71 436ee07 2668e71 436ee07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
---
language: ko
license: apache-2.0
tags:
- t5
eos_token: </s>
widget:
- text: 아버지가 방에 들어가신다.</s>
---
# Model Card for ke-t5-base-ko
# Model Details
## Model Description
- **Developed by:** Korea Electronics Technology Institute Artificial Intelligence Research Center
- **Shared by [Optional]:** More information needed
- **Model type:** Text2Text Generation
- **Language(s) (NLP):** More information needed
- **License:** More information needed
- **Related Models:**
- **Parent Model:** T5
- **Resources for more information:**
- [GitHub Repo](https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints)
- [KE-T5 Github Repo](https://github.com/AIRC-KETI/ke-t5)
- [Paper](https://aclanthology.org/2021.findings-emnlp.33/)
- [Associated Paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf)
- [Blog Post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
# Uses
## Direct Use
This model can be used for the task of Text2Text Generation
## Downstream Use [Optional]
More information needed
## Out-of-Scope Use
The model should not be used to intentionally create hostile or alienating environments for people.
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
## Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
# Training Details
## Training Data
The model is pre-trained on the [Colossal Clean Crawled Corpus (C4)](https://www.tensorflow.org/datasets/catalog/c4), which was developed and released in the context of the same [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) as T5.
The model was pre-trained on a on a **multi-task mixture of unsupervised (1.) and supervised tasks (2.)**.
See the [t5-base model card](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) for further information.
## Training Procedure
### Preprocessing
More information needed
### Speeds, Sizes, Times
More information needed
# Evaluation
## Testing Data, Factors & Metrics
### Testing Data
More information needed
### Factors
### Metrics
More information needed
## Results
More information needed
# Model Examination
More information needed
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Technical Specifications [optional]
## Model Architecture and Objective
More information needed
## Compute Infrastructure
More information needed
### Hardware
More information needed
### Software
More information needed
# Citation
**BibTeX:**
```bibtex
@inproceedings{kim-etal-2021-model-cross,
title = "A Model of Cross-Lingual Knowledge-Grounded Response Generation for Open-Domain Dialogue Systems",
author = "Kim, San and
Jang, Jin Yea and
Jung, Minyoung and
Shin, Saim",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.33",
doi = "10.18653/v1/2021.findings-emnlp.33",
pages = "352--365",
abstract = "Research on open-domain dialogue systems that allow free topics is challenging in the field of natural language processing (NLP). The performance of the dialogue system has been improved recently by the method utilizing dialogue-related knowledge; however, non-English dialogue systems suffer from reproducing the performance of English dialogue systems because securing knowledge in the same language with the dialogue system is relatively difficult. Through experiments with a Korean dialogue system, this paper proves that the performance of a non-English dialogue system can be improved by utilizing English knowledge, highlighting the system uses cross-lingual knowledge. For the experiments, we 1) constructed a Korean version of the Wizard of Wikipedia dataset, 2) built Korean-English T5 (KE-T5), a language model pre-trained with Korean and English corpus, and 3) developed a knowledge-grounded Korean dialogue model based on KE-T5. We observed the performance improvement in the open-domain Korean dialogue model even only English knowledge was given. The experimental results showed that the knowledge inherent in cross-lingual language models can be helpful for generating responses in open dialogue systems.",
}
```
```bibtex
@article{2020t5,
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {140},
pages = {1-67},
url = {http://jmlr.org/papers/v21/20-074.html}
}
```
**APA:**
```
- Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67.
```
# Glossary [optional]
More information needed
# More Information [optional]
More information needed
# Model Card Authors [optional]
Korea Electronics Technology Institute Artificial Intelligence Research Center in collaboration with Ezi Ozoani and the Hugging Face team
# Model Card Contact
More information needed
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("KETI-AIR/ke-t5-base-ko")
model = AutoModelForSeq2SeqLM.from_pretrained("KETI-AIR/ke-t5-base-ko")
```
</details>
|