File size: 2,742 Bytes
e2be03a ec160ca e2be03a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
widget:
- text: >-
translate_ko2en: IBM 왓슨X는 AI 및 데이터 플랫폼이다. 신뢰할 수 있는 데이터, 속도, 거버넌스를 갖고 파운데이션
모델 및 머신 러닝 기능을 포함한 AI 모델을 학습시키고, 조정해, 조직 전체에서 활용하기 위한 전 과정을 아우르는 기술과 서비스를
제공한다.
example_title: KO2EN 1
- text: >-
translate_ko2en: 이용자는 신뢰할 수 있고 개방된 환경에서 자신의 데이터에 대해 자체적인 AI를 구축하거나, 시장에 출시된
AI 모델을 정교하게 조정할 수 있다. 대규모로 활용하기 위한 도구 세트, 기술, 인프라 및 전문 컨설팅 서비스를 활용할 수 있다.
example_title: KO2EN 2
- text: >-
translate_en2ko: The Seoul Metropolitan Government said Wednesday that it
would develop an AI-based congestion monitoring system to provide better
information to passengers about crowd density at each subway station.
example_title: EN2KO 1
- text: >-
translate_en2ko: According to Seoul Metro, the operator of the subway
service in Seoul, the new service will help analyze the real-time flow of
passengers and crowd levels in subway compartments, improving operational
efficiency.
example_title: EN2KO 2
language:
- ko
- en
pipeline_tag: translation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ko2en_bidirection
This model is a fine-tuned version of [KETI-AIR/long-ke-t5-base](https://huggingface.co/KETI-AIR/long-ke-t5-base) on the csv_dataset.py dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6808
- Bleu: 52.2152
- Gen Len: 396.0215
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:----:|:-------:|
| 0.5962 | 1.0 | 750093 | 0.6808 | 0.0 | 18.369 |
### Framework versions
- Transformers 4.28.1
- Pytorch 1.13.0
- Datasets 2.9.0
- Tokenizers 0.13.2 |