KBlueLeaf commited on
Commit
1ff5c80
·
verified ·
1 Parent(s): 7edd67f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +102 -0
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: kohaku-license-1.0
4
+ datasets:
5
+ - laion/conceptual-captions-12m-webdataset
6
+ - CaptionEmporium/coyo-hd-11m-llavanext
7
+ - KBlueLeaf/danbooru2023-metadata-database
8
+ - graph-based-captions/GBC10M
9
+ language:
10
+ - en
11
+ pipeline_tag: text-generation
12
+ library_name: transformers
13
+ ---
14
+ # TIPO: Text to Image with text presampling for Prompt Optimization
15
+
16
+ 200M LLaMA arch model trained for TIPO. <br>
17
+ Tech Report: https://arxiv.org/abs/2411.08127
18
+
19
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630593e2fca1d8d92b81d2a1/fc9ovmARapQmgq9DZ7ApJ.png)
20
+
21
+ ## Introduction
22
+
23
+ In this project, we introduce "TIPO" (**T**ext to **I**mage with text presampling for **P**rompt **O**ptimization), an innovative framework designed to significantly enhance the quality and usability of Text-to-Image (T2I) generative models. TIPO utilizes the Large Language Models (LLMs) to perform "Text Presampling" within the inference pipeline of text-to-image generative modeling. By refining and extending user input prompts, TIPO enables generative models to produce superior results with minimal user effort, making T2I systems more accessible and effective for a wider range of users.
24
+
25
+ ## Usage
26
+
27
+ Use updated version of DTG extension (renamed to z-tipo-extension), current version of z-tipo-extension support stable-diffusion-webui, stable-diffusion-webui-forge and ComfyUI. SD-Next haven't been tested.
28
+ https://github.com/KohakuBlueleaf/z-tipo-extension
29
+
30
+ ## Model arch and Training
31
+
32
+ This model is LLaMA arch with 200M parameters, the training data is combined version of Danbooru2023, Coyo-HD-11M. <br>
33
+ The total token seen is around 50B tokens. <br>
34
+ For more information please refer to the tech report and following table.
35
+
36
+ | | TIPO-200M | TIPO-200M-ft- | TIPO-500M |
37
+ | ----------------- | ------------------------------------------------------------------------------ | ---------------------------------- | ------------------------------------------------------------------------------ |
38
+ | Arch | LLaMA | LLaMA | LLaMA |
39
+ | Max ctx length | 1024 | 1024 | 1024 |
40
+ | Batch Size | 2048 | 2048 | 3584 |
41
+ | Training dataset | Danbooru, GBC10M, 5epoch<br />Danbooru, GBC10M, Coyo11M, 3epoch | Danbooru(pixtral), GBC10M, Coyo11M, 2epoch | Danbooru, GBC10M, Coyo11M, 5epoch |
42
+ | Real Token Seen* | 40B token | 62B (12B more from TIPO-200M-ft) | 30B token |
43
+ | Training Hardware | RTX 3090 x 4 | RTX 3090 x 4 | H100 x 8 |
44
+ | Training Time | 420 hour` | 130 hour` (670hour total) | 100 hour` |
45
+ | Huggingface | [KBlueLeaf/TIPO-200M · Hugging Face](https://huggingface.co/KBlueLeaf/TIPO-200M) | You Are HERE | [KBlueLeaf/TIPO-500M · Hugging Face](https://huggingface.co/KBlueLeaf/TIPO-500M) |
46
+
47
+ *: We only count "non-padding token" in the token seen, since all the training data have very large length range. <br>
48
+ `: Since the training data is pretty short, it cost more time to reach same token seen than general LLM pretraining. <br>
49
+ As reference, with 4096 as max ctx length and almost all the data have reach that length, you may only need 2days to reach 10B token seen on RTX 3090 x 4 with 200M model.
50
+
51
+ ### Evaluation
52
+ **Evaluation are done on TIPO-200M model** <br>
53
+ We have tested TIPO compared to other Model in several test and metrics:
54
+
55
+ #### Scenery tag test
56
+
57
+ In this test we use single "scenery" tag as input. (With some certain meta) <br>
58
+ To test each prompt gen method to see if they can obtain the desired distribution of outputs while maintain the quality of images.
59
+
60
+ | Scenery Tag Test | Original | GPT4o-mini | Prompt DB | Promptis | TIPO(ours) |
61
+ | ---- | ---- | ---- | ---- | ---- | ---- |
62
+ | FDD ↓ | 0.3558 | 0.5414 | 0.3247 | *0.2350* | **0.2282** |
63
+ | Aesthetic ↑ | 5.0569 | **6.3676** | 6.1609 | 5.9468 | *6.2571* |
64
+ | AI Corrupt ↑ | 0.4257 | *0.7490* | 0.5024 | 0.5669 | **0.9195** |
65
+
66
+ #### Short/Truncated Long test
67
+
68
+ In this test we use short caption or manually truncated caption from GBC10M and CoyoHD11M. <br>
69
+ This test examine the ability of prompt gen method on handling almostly completed prompts.
70
+
71
+ | Short | Original | GPT4o-mini | Prompt DB | Promptis | TIPO(ours) |
72
+ | ---- | ---- | ---- | ---- | ---- | ---- |
73
+ | FDD ↓ | 0.0957 | 0.1668 | *0.0980* | 0.1783 | 0.1168 |
74
+ | Aesthetic ↑ | 5.8370 | **6.0589** | 5.8213 | 5.7963 | *5.8531* |
75
+ | AI Corrupt ↑ | 0.7113 | 0.6985 | 0.7064 | 0.6314 | **0.7131** |
76
+
77
+ | Truncated Long | Original | GPT4o-mini | Prompt DB | Promptis | TIPO(ours) |
78
+ | ---- | ---- | ---- | ---- | ---- | ---- |
79
+ | FDD ↓ | 0.0955 | 0.1683 | *0.1247* | 0.2096 | 0.1210 |
80
+ | Aesthetic ↑ | 5.7497 | **6.0168** | 5.8191 | 5.7759 | *5.8364* |
81
+ | AI Corrupt ↑ | 0.6868 | 0.6712 | 0.6741 | 0.5925 | **0.7130** |
82
+
83
+
84
+
85
+ ## LICENSE
86
+
87
+ This model is released under [Kohaku License 1.0](https://kblueleaf.net/documents/kohaku-license/?[Your%20Organization/Name]=KohakuBlueLeaf&[Year]=2024) <br>
88
+ You can check the above provided URL or check the LICENSE file in this repo.
89
+
90
+ ### Citation
91
+
92
+ ```bibtex
93
+ @misc{yeh2024tipotextimagetext,
94
+ title={TIPO: Text to Image with Text Presampling for Prompt Optimization},
95
+ author={Shih-Ying Yeh and Sang-Hyun Park and Giyeong Oh and Min Song and Youngjae Yu},
96
+ year={2024},
97
+ eprint={2411.08127},
98
+ archivePrefix={arXiv},
99
+ primaryClass={cs.CV},
100
+ url={https://arxiv.org/abs/2411.08127},
101
+ }
102
+ ```