Text-to-Image
Diffusers
Safetensors
English
StableDiffusionXLPipeline
Inference Endpoints
File size: 15,891 Bytes
2d91860
 
 
 
6776258
 
 
 
 
 
2d91860
6776258
 
 
 
 
 
 
bdf051b
 
 
 
 
c079400
bdf051b
c079400
 
bdf051b
98322b2
d4c96b2
c079400
 
 
98322b2
bdf051b
 
 
46f064e
bdf051b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9247d4
bdf051b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c079400
bdf051b
 
 
 
 
 
 
 
 
 
 
c079400
 
 
 
 
bdf051b
 
c079400
 
bdf051b
c079400
bdf051b
 
 
 
 
c079400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdf051b
 
 
 
 
 
6776258
 
 
 
 
 
f349f5c
6776258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369a0b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
---
license: other
license_name: fair-ai-public-license-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
datasets:
- KBlueLeaf/danbooru2023-webp-4Mpixel
- KBlueLeaf/danbooru2023-sqlite
language:
- en
library_name: diffusers
---

# Kohaku XL Δelta

***The best "SDXL anime base model that has been trained by an 'individual'."***

join us: https://discord.gg/tPBsKDyRR5


<style>
  
  .custom-table {
    width: 100%;
    height: 100%;
    border-collapse: collapse;
    margin-top: 0em;
    border: none;
  }
  .custom-table img{
    margin-top: 0px;
  }
  .custom-table tr{
    border: none !important;
  }
  
  .custom-table td {
    vertical-align: top;
    padding: 0;
    box-shadow: 0px 0px 0px 0px rgba(0, 0, 0, 0.15);
  }

  .custom-image-container {
    position: relative;
    width: 100%;
    margin-bottom: 0em;
    overflow: hidden;
    border-radius: 10px;
    transition: transform .7s;
    /* Smooth transition for the container */
  }

  .custom-image-container:hover {
    transform: scale(1.05);
    /* Scale the container on hover */
  }

  .custom-image-container:hover .custom-image {
    opacity: 0
  }
  .custom-image-container:hover 
  .hover-image {
    opacity: 1;
  }

  .custom-image {
    width: 100%;
    height: auto;
    object-fit: cover;
    border-radius: 10px;
    transition: transform .7s, opacity .5s;
    margin-bottom: 0em;
  }

  .hover-image {
    position: absolute;
    top: 0;
    left: 0;
    opacity: 0;
    transition: opacity .5s;
  }
  
  .nsfw-filter {
    filter: blur(8px); /* Apply a blur effect */
    transition: filter 0.3s ease; /* Smooth transition for the blur effect */
  }

  .custom-image-container:hover .nsfw-filter {
    filter: none; /* Remove the blur effect on hover */
  }
  
  .overlay {
    position: absolute;
    bottom: 0;
    left: 0;
    right: 0;
    color: white;
    width: 100%;
    height: 100%;
    display: flex;
    flex-direction: column;
    justify-content: center;
    align-items: center;
    font-size: 1vw;
    font-style: bold;
    text-align: center;
    opacity: 0;
    /* Keep the text fully opaque */
    background: linear-gradient(0deg, rgba(0, 0, 0, 0.6) 60%, rgba(0, 0, 0, 0) 100%);
    transition: opacity .5s;
  }
  .custom-image-container:hover .overlay {
    opacity: 1;
    /* Make the overlay always visible */
  }
  .overlay-text {
    background: linear-gradient(45deg, #130c28, #ca76e2);
    -webkit-background-clip: text;
    color: transparent;
    /* Fallback for browsers that do not support this effect */
    text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.7);
    /* Enhanced text shadow for better legibility */
    
  .overlay-subtext {
    font-size: 0.75em;
    margin-top: 0.5em;
    font-style: italic;
  }
    
  .overlay,
  .overlay-subtext {
    text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.5);
  }
    
</style>


<table class="custom-table">
  <tr>
    <td style="width: 36.8275862068966%;">
      <div class="custom-image-container">
        <div class="image-wrapper">
          <img class="custom-image" src="sample/table/th-1.png" alt="sample1">
          <img class="hover-image" src="sample/table/1.png" alt="sample1">
          <div class="overlay" style="font-size: 1vw; font-style: bold;"> 
            Stream in the forest 
            <div class="overlay-subtext" style="font-size: 0.75em; font-style: italic;">"by KBlueLeaf"</div>
          </div>
        </div>
      </div>
    </td>
    <td style="width: 1.37931034482759%;"></td>
    <td style="width: 61.7931034482759%;">
      <table class="custom-table" style="margin: 0 !important; padding: 0 !important;">
        <tr style="height: 30.8858996897622%;">
          <td>
            <div class="custom-image-container">
              <div class="image-wrapper">
                <img class="custom-image" src="sample/table/th-2-1.png" alt="sample2">
                <img class="hover-image" src="sample/table/2-1.png" alt="sample2">
                <div class="overlay" style="font-size: 1vw; font-style: bold;"> 
                  The rise
                  <div class="overlay-subtext" style="font-size: 0.75em; font-style: italic;">"by KBlueLeaf"</div>
                </div>
              </div>
            </div>
          </td>
        </tr>
        <tr style="height: 3.1023784901758%;"></tr>
        <tr style="height: 66.0117218200621%;">
          <td>
            <table class="custom-table" style="margin: 0 !important; padding: 0 !important;">
              <tr>
                <td style="width: 47.47023828125%">
                  <div class="custom-image-container">
                    <div class="image-wrapper">
                      <img class="custom-image" src="sample/table/th-2-2-1.png" alt="sample3">
                      <img class="hover-image" src="sample/table/2-2-1.png" alt="sample3">
                      <div class="overlay" style="font-size: 1vw; font-style: bold;"> 
                        Looking back
                        <div class="overlay-subtext" style="font-size: 0.75em; font-style: italic;">"by KBlueLeaf"</div>
                      </div>
                    </div>
                  </div>
                </td>
                <td style="width: 2.23214285714286%;"></td>
                <td style="width: 50.2976188616071%">
                  <table class="custom-table" style="margin: 0 !important; padding: 0 !important;">
                    <tr style="height: 24.6997434804245%;">
                      <td>
                        <div class="custom-image-container">
                          <div class="image-wrapper">
                            <img class="custom-image" src="sample/table/th-2-2-2-1.png" alt="sample4">
                            <img class="hover-image" src="sample/table/2-2-2-1.png" alt="sample4"> 
                            <div class="overlay" style="font-size: 1vw; font-style: bold;"> 
                              Flower
                              <div class="overlay-subtext" style="font-size: 0.75em; font-style: italic;">"by KBlueLeaf"</div>
                            </div>
                          </div>
                        </div>
                      </td>
                    </tr>
                    <tr style="height: 4.69973878068567%;"></tr>
                    <tr style="height: 70.6005177388899%;">
                      <td>
                        <div class="custom-image-container">
                          <div class="image-wrapper">
                            <img class="custom-image" src="sample/table/th2-2-2-2-2.png" alt="sample5">
                            <img class="hover-image" src="sample/table/2-2-2-2.png" alt="sample5">
                            <div class="overlay" style="font-size: 1vw; font-style: bold;"> 
                              "The Cat"
                              <div class="overlay-subtext" style="font-size: 0.75em; font-style: italic;">"by KBlueLeaf"</div>
                            </div>
                          </div>
                        </div>
                      </td>
                    </tr>
                  </table>
                </td>
              </tr>
            </table>
          </td>
        </tr>
      </table>
    </td>
  </tr>
</table>

## Introduction

Kohaku XL Delta, the fourth major iteration in the Kohaku XL series, features a 3.6 million images dataset, LyCORIS fine-tuning[1], trained on comsumer-level hardware, and is fully open-sourced.

## Usage
**the "base" version is "before train" one!!!!**

Here's a simple format to make using this model a breeze:

```
<1girl/1boy/1other/...>, <character>, <series>, <artists>, <special tags>, <general tags>
```

Special tags(quality, rating, and date) actually fall under general tags. But it's a good idea to group all these tags before the general tags.

**While Kohaku XL Delta has mastered few artists' styles with high fidelity. However, users are strongly encouraged to blend multiple artist tags to explore new styles, rather than attempting to replicate the style of any specific artist.**

#### Tags

All the danbooru tags with at least 1000 popularity should work.
All the danbooru tags with at least 100 popularity can possibly work with high emphasis.

Remember to remove all the underscore in tags. (Underscores in short tags are not be removed, which are very likely part of emoji tags.)

### Special Tags

- **Quality tag**s: masterpiece, best quality, great quality, good quality, normal quality, low quality, worst quality
- **Rating tags**: safe, sensitive, nsfw, explicit
- **Date tags**: newest, recent, mid, early, old

**Quality Tags**
Quality tags are assigned based on the percentile rankings of the favorite count (fav_count) within each rating category to avoid bias on nsfw content (Animagine XL v3 have met this problem), organized from high to low as follows: 95th, 85th, 75th, 50th, 25th, and 10th percentiles. This creates seven distinct quality levels separated by six thresholds.

**Rating tags**

* **General**: safe
* **Sensitive**: sensitive
* **Questionable**: nsfw
* **Explicit**: nsfw, explicit

Note: During training, content tagged as "explicit" is also considered under "nsfw" to ensure a comprehensive understanding.

**Date tags**
Date tags are based on the upload dates of the images, as the metadata does not include the actual creation dates.
The periods are categorized as follows:

* 2005~2010: old
* 2011~2014: early
* 2015~2017: mid
* 2018~2020: recent
* 2021~2024: newest

### Emphasis

Given the short training period, some tags might not have been learned well. Through experimentation, increasing the "emphasis weight" to between 1.5 and 2.5 can still yield descent results, especially for character or artist tags.
For sd-webui users, please use version>=1.8.0 and switch the emphasis mode to "No norm" to prevent potential NaN issues.

### Resolution

This model is trained for resolutions from ARB 1024x1024 with minimum resolution 256 and maximum resolution 4096. This means you can use the standard SDXL resolution. However, opting for a slightly higher resolution than 1024x1024 is recommended. Applying a hires-fix is also suggested for better results.

For more information, please check out the metadata of the sample images provided.

## How This Model Came to Be

### Dataset

The dataset for training this model was sourced from [HakuBooru](https://github.com/KohakuBlueleaf/HakuBooru), comprising 3.6 million images selected from the [danbooru2023](https://huggingface.co/datasets/KBlueLeaf/danbooru2023-webp-4Mpixel) dataset.[2][3]

A selection process was employed to choose 1 million posts from IDs 0 to 2,999,999, another million from IDs 3,000,000 to 4,999,999, and all posts after ID 5,000,000, totaling 4.1 million posts. After filtering out deleted posts, gold account posts and those without images (which could be GIFs or MP4s), the final dataset comprised 3.6 million images.

The selection was essentially random, but a fixed seed was utilized to ensure reproducibility.

**Further Process**

* **Shuffle tags**: The order of general tags was shuffled in each step.
* **Tag dropout**: Randomly, 10% of general tags were dropped in each step.

### Training

The training of Kohaku XL Delta was facilitated by the [LyCORIS](https://github.com/KohakuBlueleaf/LyCORIS) project and the trainer from [kohya-ss/sd-scripts](https://github.com/kohya-ss/sd-scripts). [1][4]

**Base Model Refinement**
Our investigation indicated that training the "token_embedding" and "position_embedding" within CLIP, or the "positional_embedding" in openCLIP, may not be beneficial for fine-tuning on a small to medium scale, particularly with smaller batch sizes.[5][6]

Consequently, we reverted to the original token and position embeddings from TE1 and TE2 models. Following this, we combined the restored gamma rev2  and beta7 models through a weighted sum (weight=0.5), forming the foundational model for Kohaku XL Delta.

This foundational model, referred to as "delta-pre2" or "delta base," serves as a preliminary version without further training, positioning its capabilities between Kohaku XL gamma rev2 and Kohaku XL beta7.

**Algorithm: LoKr**[7]
The model was trained using the LoKr algorithm with full matrix triggered and a factor of 2~8 for different modules. The aim was to demonstrate the applicability of LoRA/LyCORIS in training base models.

The original LoKr file size is under 800MB, and the TE was not frozen. The original LoKr file also be provided as "delta-lokr" version.

For detailed settings, refer to the LyCORIS config file.

**Other Training Details**

- **Hardware**: Dual RTX 3090s
- **Num Train Images**: 3,665,398
- **Batch Size**: 4
- **Grad Accumulation Step**: 16
- **Equivalent Batch Size**: 128
- **Total Epoch**: 1
- **Total Steps**: 28638
- **Optimizer**: Lion8bit
  - **Learning Rate**: 4e-5 for UNet / 1e-5 for TE
  - **LR Scheduler**: Constant
  - **Warmup Steps**: 100
  - **Weight Decay**: 0.1
  - **Betas**: 0.9, 0.95
- **Min SNR Gamma**: 5
- **Resolution**: 1024x1024
- **Min Bucket Resolution**: 256
- **Max Bucket Resolution**: 4096
- **Mixed Precision**: FP16

**Warning**: Versions 0.36.0~0.41.0 of bitsandbytes have significant [bugs](https://github.com/TimDettmers/bitsandbytes/issues/659) in the 8bit optimizer that could compromise training, so updating is essential.[8]

**Training Cost**
Utilizing DDP with two RTX 3090s, completing 1 epoch across the 3.6 million image dataset took approximately 17 to 18 days. Each step for an equivalent batch size of 128 took about 51 to 51.5 seconds to complete.

### What's Next

Delta is likely the last big update for Kohaku XL, but that doesn't mean I'm done tinkering with it. And I won't ensure this is actually the last one.

I'm thinking about running it through a few more epochs or maybe beefing up the dataset to 5 million images soon. Plus, I'm considering trying out DoKr with a bit of a bigger setup for some experimental tweaks.

(Funny thing, Delta started off as an experiment too, but turned out so well it became a main release!)

## Special Thanks

AngelBottomless & Nyanko7: danbooru2023 dataset[3]
Kohya-ss: Trainer[4]
ChatGPT/GPT4: Refine this model card

---

***AI art should be looked like AI, not like humans.***

---

## Reference & Resource

### Reference

[1] **Shih-Ying Yeh**, Yu-Guan Hsieh, Zhidong Gao, Bernard B W Yang, Giyeong Oh, & Yanmin Gong (2024). Navigating Text-To-Image Customization: From LyCORIS Fine-Tuning to Model Evaluation. In The Twelfth International Conference on Learning Representations.

[2] HakuBooru - text-image dataset maker for booru style image platform. https://github.com/KohakuBlueleaf/HakuBooru

[3] Danbooru2023: A Large-Scale Crowdsourced and Tagged Anime Illustration Dataset.
https://huggingface.co/datasets/nyanko7/danbooru2023

[4] kohya-ss/sd-scripts. 
https://github.com/kohya-ss/sd-scripts

[5] Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
https://github.com/huggingface/transformers/blob/b647acdb53d251cec126b79e505bac11821d7c93/src/transformers/models/clip/modeling_clip.py#L204-L205

[6] OpenCLIP - An open source implementation of CLIP.
https://github.com/mlfoundations/open_clip/blob/73fa7f03a33da53653f61841eb6d69aef161e521/src/open_clip/transformer.py#L598-L604

[7] LyCORIS - Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
https://github.com/KohakuBlueleaf/LyCORIS/blob/main/docs/Algo-Details.md#lokr

[8] TimDettmers/bitsandbytes - issue 659/152/227/262 - Wrong indented lines cause bugs for a long time.
https://github.com/TimDettmers/bitsandbytes/issues/659

### Resource

* Kohaku XL beta. https://civitai.com/models/162577/kohaku-xl-beta
* Kohaku XL gamma. https://civitai.com/models/270291/kohaku-xl-gamma

## Appendix
Sample images will be put in here later.
You can check the sample folder at first.