Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
---
|
2 |
library_name: peft
|
|
|
|
|
|
|
3 |
---
|
4 |
## Training procedure
|
5 |
|
@@ -19,3 +22,185 @@ The following `bitsandbytes` quantization config was used during training:
|
|
19 |
|
20 |
|
21 |
- PEFT 0.6.0.dev0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
+
license: afl-3.0
|
4 |
+
datasets:
|
5 |
+
- nickrosh/Evol-Instruct-Code-80k-v1
|
6 |
---
|
7 |
## Training procedure
|
8 |
|
|
|
22 |
|
23 |
|
24 |
- PEFT 0.6.0.dev0
|
25 |
+
|
26 |
+
- # -*- coding: utf-8 -*-
|
27 |
+
"""bf16_sharded_Fine_Tuning_using_QLora(1).ipynb
|
28 |
+
|
29 |
+
Automatically generated by Colaboratory.
|
30 |
+
|
31 |
+
Original file is located at
|
32 |
+
https://colab.research.google.com/drive/1yH0ov1ZDpun6yGi19zE07jkF_EUMI1Bf
|
33 |
+
|
34 |
+
**Code Credit: Hugging Face**
|
35 |
+
|
36 |
+
**Dataset Credit: https://twitter.com/Dorialexander/status/1681671177696161794 **
|
37 |
+
|
38 |
+
## Finetune Llama-2-7b on a Google colab
|
39 |
+
|
40 |
+
Welcome to this Google Colab notebook that shows how to fine-tune the recent code Llama-2-7b model on a single Google colab and turn it into a chatbot
|
41 |
+
|
42 |
+
We will leverage PEFT library from Hugging Face ecosystem, as well as QLoRA for more memory efficient finetuning
|
43 |
+
|
44 |
+
## Setup
|
45 |
+
|
46 |
+
Run the cells below to setup and install the required libraries. For our experiment we will need `accelerate`, `peft`, `transformers`, `datasets` and TRL to leverage the recent [`SFTTrainer`](https://huggingface.co/docs/trl/main/en/sft_trainer). We will use `bitsandbytes` to [quantize the base model into 4bit](https://huggingface.co/blog/4bit-transformers-bitsandbytes). We will also install `einops` as it is a requirement to load Falcon models.
|
47 |
+
"""
|
48 |
+
|
49 |
+
!pip install -q -U trl transformers accelerate git+https://github.com/huggingface/peft.git
|
50 |
+
!pip install -q datasets bitsandbytes einops wandb
|
51 |
+
|
52 |
+
"""## Dataset
|
53 |
+
|
54 |
+
login huggingface
|
55 |
+
"""
|
56 |
+
|
57 |
+
import wandb
|
58 |
+
|
59 |
+
!wandb login
|
60 |
+
|
61 |
+
# Initialize WandB
|
62 |
+
wandb_key=["<API_KEY>"]
|
63 |
+
wandb.init(project="<project_name>",
|
64 |
+
name="<name>"
|
65 |
+
)
|
66 |
+
# login with API
|
67 |
+
from huggingface_hub import login
|
68 |
+
login()
|
69 |
+
|
70 |
+
from datasets import load_dataset
|
71 |
+
|
72 |
+
#dataset_name = "timdettmers/openassistant-guanaco" ###Human ,.,,,,,, ###Assistant
|
73 |
+
dataset_name = "nickrosh/Evol-Instruct-Code-80k-v1"
|
74 |
+
#dataset_name = 'AlexanderDoria/novel17_test' #french novels
|
75 |
+
dataset = load_dataset(dataset_name, split="train")
|
76 |
+
|
77 |
+
"""## Loading the model"""
|
78 |
+
|
79 |
+
import torch
|
80 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer
|
81 |
+
|
82 |
+
#model_name = "TinyPixel/Llama-2-7B-bf16-sharded"
|
83 |
+
#model_name = "abhinand/Llama-2-7B-bf16-sharded-512MB"
|
84 |
+
model_name= "TinyPixel/CodeLlama-7B-Instruct-bf16-sharded"
|
85 |
+
bnb_config = BitsAndBytesConfig(
|
86 |
+
load_in_4bit=True,
|
87 |
+
bnb_4bit_quant_type="nf4",
|
88 |
+
bnb_4bit_compute_dtype=torch.float16,
|
89 |
+
)
|
90 |
+
|
91 |
+
model = AutoModelForCausalLM.from_pretrained(
|
92 |
+
model_name,
|
93 |
+
quantization_config=bnb_config,
|
94 |
+
trust_remote_code=True
|
95 |
+
)
|
96 |
+
model.config.use_cache = False
|
97 |
+
|
98 |
+
"""Let's also load the tokenizer below"""
|
99 |
+
|
100 |
+
inputs = tokenizer(text, return_tensors="pt", padding="max_length", max_length=max_seq_length, truncation=True).to(device)
|
101 |
+
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
103 |
+
tokenizer.pad_token = tokenizer.eos_token
|
104 |
+
|
105 |
+
from peft import LoraConfig, get_peft_model
|
106 |
+
|
107 |
+
lora_alpha = 16
|
108 |
+
lora_dropout = 0.1
|
109 |
+
lora_r = 64
|
110 |
+
|
111 |
+
peft_config = LoraConfig(
|
112 |
+
lora_alpha=lora_alpha,
|
113 |
+
lora_dropout=lora_dropout,
|
114 |
+
r=lora_r,
|
115 |
+
bias="none",
|
116 |
+
task_type="CAUSAL_LM"
|
117 |
+
)
|
118 |
+
|
119 |
+
"""## Loading the trainer
|
120 |
+
|
121 |
+
Here we will use the [`SFTTrainer` from TRL library](https://huggingface.co/docs/trl/main/en/sft_trainer) that gives a wrapper around transformers `Trainer` to easily fine-tune models on instruction based datasets using PEFT adapters. Let's first load the training arguments below.
|
122 |
+
"""
|
123 |
+
|
124 |
+
from transformers import TrainingArguments
|
125 |
+
|
126 |
+
output_dir = "./results"
|
127 |
+
per_device_train_batch_size = 4
|
128 |
+
gradient_accumulation_steps = 4
|
129 |
+
optim = "paged_adamw_32bit"
|
130 |
+
save_steps = 10
|
131 |
+
logging_steps = 11
|
132 |
+
learning_rate = 2e-4
|
133 |
+
max_grad_norm = 0.3
|
134 |
+
max_steps = 10
|
135 |
+
warmup_ratio = 0.03
|
136 |
+
lr_scheduler_type = "constant"
|
137 |
+
|
138 |
+
training_arguments = TrainingArguments(
|
139 |
+
output_dir=output_dir,
|
140 |
+
per_device_train_batch_size=per_device_train_batch_size,
|
141 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
142 |
+
optim=optim,
|
143 |
+
save_steps=save_steps,
|
144 |
+
logging_steps=logging_steps,
|
145 |
+
learning_rate=learning_rate,
|
146 |
+
fp16=True,
|
147 |
+
max_grad_norm=max_grad_norm,
|
148 |
+
max_steps=max_steps,
|
149 |
+
warmup_ratio=warmup_ratio,
|
150 |
+
group_by_length=True,
|
151 |
+
lr_scheduler_type=lr_scheduler_type,
|
152 |
+
)
|
153 |
+
|
154 |
+
"""Then finally pass everthing to the trainer"""
|
155 |
+
|
156 |
+
from trl import SFTTrainer
|
157 |
+
|
158 |
+
max_seq_length = 512
|
159 |
+
|
160 |
+
trainer = SFTTrainer(
|
161 |
+
model=model,
|
162 |
+
train_dataset=dataset,
|
163 |
+
peft_config=peft_config,
|
164 |
+
dataset_text_field="output",
|
165 |
+
max_seq_length=max_seq_length,
|
166 |
+
tokenizer=tokenizer,
|
167 |
+
args=training_arguments,
|
168 |
+
)
|
169 |
+
|
170 |
+
"""We will also pre-process the model by upcasting the layer norms in float 32 for more stable training"""
|
171 |
+
|
172 |
+
for name, module in trainer.model.named_modules():
|
173 |
+
if "norm" in name:
|
174 |
+
module = module.to(torch.float32)
|
175 |
+
|
176 |
+
"""## Train the model
|
177 |
+
You're using a LlamaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
|
178 |
+
|
179 |
+
Now let's train the model! Simply call `trainer.train()`
|
180 |
+
"""
|
181 |
+
|
182 |
+
trainer.train()
|
183 |
+
|
184 |
+
"""During training, the model should converge nicely as follows:
|
185 |
+
|
186 |
+
![image](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/loss-falcon-7b.png)
|
187 |
+
|
188 |
+
The `SFTTrainer` also takes care of properly saving only the adapters during training instead of saving the entire model.
|
189 |
+
"""
|
190 |
+
|
191 |
+
model_to_save = trainer.model.module if hasattr(trainer.model, 'module') else trainer.model # Take care of distributed/parallel training
|
192 |
+
model_to_save.save_pretrained("outputs")
|
193 |
+
|
194 |
+
lora_config = LoraConfig.from_pretrained('outputs')
|
195 |
+
model = get_peft_model(model, lora_config)
|
196 |
+
|
197 |
+
dataset['output']
|
198 |
+
|
199 |
+
text = "make a advanced python script to finetune a llama2-7b-bf16-sharded model with accelerator and qlora"
|
200 |
+
device = "cuda:0"
|
201 |
+
inputs = tokenizer(text, return_tensors="pt", padding="max_length", max_length=max_seq_length, truncation=True).to(device)
|
202 |
+
#inputs = tokenizer(text, return_tensors="pt").to(device)
|
203 |
+
outputs = model.generate(**inputs, max_new_tokens=150)
|
204 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=False))
|
205 |
+
|
206 |
+
model.push_to_hub("K00B404/CodeLlama-7B-Instruct-bf16-sharded-ft-v0_01", use_auth_token="<HUGGINGFACE_WRITE-api")
|