File size: 2,575 Bytes
05b23e3
 
 
 
 
 
 
 
 
 
 
 
 
 
35869f7
05b23e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
model-index:
- name: Junrulu/Llama-3-8B-Instruct-Iterative-SamPO
  results: []
datasets:
- HuggingFaceH4/ultrafeedback_binarized
language:
- en
base_model: meta-llama/Meta-Llama-3-8B-Instruct
license: llama3
---

# Model Card for Llama-3-8B-Instruct-Iterative-SamPO

This repository provides a fine-tuned version of Llama-3-8B-Instruct, using our proposed [SamPO](https://github.com/LuJunru/SamPO) algorithm: Eliminating Biased Length Reliance of Direct Preference Optimization via Down-Sampled KL Divergence. We obey all licenses mentioned in llama3's work.

## Performance

| Model | GSM8K | IFEval | PiQA | MMLU | TruthfulQA | AlpacaEval2 | LC AlpacaEval2 | Length in Tokens |
| ----- | ------| ------ | ---- | ---- | ---------- | ----------- | -------------- | ---------------- |
| **Llama3-8B-Instruct** | 75.06 | 49.40 | 80.69 | 63.85 | 36.47 | 22.57 | 22.92 | 421 |
| **Llama3-8B-Instruct-DPO** | 75.59 | 51.80 | **81.94** | 64.06 | 40.39 | 23.34 | 23.20 | 422 |
| **Llama3-8B-Instruct-Iterative-DPO** | 74.91 | 52.52 | 81.66 | 64.02 | 39.90 | 23.92 | 25.50 | 403 |
| **Llama3-8B-Instruct-Iterative-SamPO** | **77.81** | **60.55** | 81.18 | **64.12** | **44.07** | **30.68** | **35.14** | 377 |

## Evaluation Details
Five conditional benchmarks, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness):
- GSM8K: 8-shot, report strict match
- IFEval: 3-shot, report instruction-level strict accuracy
- PiQA: 3-shot, report accuracy
- MMLU: 0-shot, report normalized accuracy
- TruthfulQA: 3-shot, report accuracy of single-true mc1 setting

One open-ended benchmark, using official [alpaca_eval](https://github.com/tatsu-lab/alpaca_eval/):
- AlpacaEval2: win rate (%) judged by GPT-4-turbo between the model's outputs vs. the GPT-4-turbo's response
- LC AlpacaEval2: length-debiased win rate (%) of AlpacaEval2
- Length in Tokens: the average output length of AlpacaEval2, calculated in tokens with Llama3's tokenizer

## Input Format

The model is trained to use the following format:
```
<|start_header_id|>user<|end_header_id|>

{PROMPT}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

{Response}
```

## Training hyperparameters

The following hyperparameters were used during DPO/SamPO training:
- DPO beta: 0.1 
- learning_rate: 4e-7 * sqrt(Num of Nodes)
- total_train_batch_size: 128 * Num of Nodes
- optimizer: AdamW with beta1 0.9, beta2 0.999 and epsilon 1e-8
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- Weight Decay: 0.0
- num_epochs: 3.0
- Specifically add above input format over training samples