JuanCadavid commited on
Commit
0ee4ecc
·
1 Parent(s): 8cbeb9d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - generator
7
+ model-index:
8
+ - name: t5-small-finetuned-NL2ModelioMQ-EN
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # t5-small-finetuned-NL2ModelioMQ-EN
16
+
17
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the generator dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0000
20
+ - Rouge2 Precision: 0.9789
21
+ - Rouge2 Recall: 0.6055
22
+ - Rouge2 Fmeasure: 0.7295
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 16
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 3
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
53
+ |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
54
+ | 0.0107 | 1.0 | 4449 | 0.0006 | 0.9688 | 0.6005 | 0.7229 |
55
+ | 0.0022 | 2.0 | 8898 | 0.0001 | 0.9787 | 0.6054 | 0.7294 |
56
+ | 0.001 | 3.0 | 13347 | 0.0000 | 0.9789 | 0.6055 | 0.7295 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.25.1
62
+ - Pytorch 1.13.0+cu116
63
+ - Datasets 2.7.1
64
+ - Tokenizers 0.13.2