JuanCadavid
commited on
Commit
·
0ee4ecc
1
Parent(s):
8cbeb9d
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- generator
|
7 |
+
model-index:
|
8 |
+
- name: t5-small-finetuned-NL2ModelioMQ-EN
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-small-finetuned-NL2ModelioMQ-EN
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the generator dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0000
|
20 |
+
- Rouge2 Precision: 0.9789
|
21 |
+
- Rouge2 Recall: 0.6055
|
22 |
+
- Rouge2 Fmeasure: 0.7295
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 16
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 3
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
|
54 |
+
| 0.0107 | 1.0 | 4449 | 0.0006 | 0.9688 | 0.6005 | 0.7229 |
|
55 |
+
| 0.0022 | 2.0 | 8898 | 0.0001 | 0.9787 | 0.6054 | 0.7294 |
|
56 |
+
| 0.001 | 3.0 | 13347 | 0.0000 | 0.9789 | 0.6055 | 0.7295 |
|
57 |
+
|
58 |
+
|
59 |
+
### Framework versions
|
60 |
+
|
61 |
+
- Transformers 4.25.1
|
62 |
+
- Pytorch 1.13.0+cu116
|
63 |
+
- Datasets 2.7.1
|
64 |
+
- Tokenizers 0.13.2
|