JovialValley commited on
Commit
2d32b73
·
1 Parent(s): aef1910

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - wer
8
+ model-index:
9
+ - name: model_phoneme_onSet2
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # model_phoneme_onSet2
17
+
18
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.1464
21
+ - 0 Precision: 1.0
22
+ - 0 Recall: 0.9677
23
+ - 0 F1-score: 0.9836
24
+ - 0 Support: 31
25
+ - 1 Precision: 0.9167
26
+ - 1 Recall: 1.0
27
+ - 1 F1-score: 0.9565
28
+ - 1 Support: 22
29
+ - 2 Precision: 1.0
30
+ - 2 Recall: 0.9333
31
+ - 2 F1-score: 0.9655
32
+ - 2 Support: 30
33
+ - 3 Precision: 0.9333
34
+ - 3 Recall: 1.0
35
+ - 3 F1-score: 0.9655
36
+ - 3 Support: 14
37
+ - Accuracy: 0.9691
38
+ - Macro avg Precision: 0.9625
39
+ - Macro avg Recall: 0.9753
40
+ - Macro avg F1-score: 0.9678
41
+ - Macro avg Support: 97
42
+ - Weighted avg Precision: 0.9715
43
+ - Weighted avg Recall: 0.9691
44
+ - Weighted avg F1-score: 0.9693
45
+ - Weighted avg Support: 97
46
+ - Wer: 0.1380
47
+ - Mtrix: [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 22, 0, 0], [2, 0, 1, 28, 1], [3, 0, 0, 0, 14]]
48
+
49
+ ## Model description
50
+
51
+ More information needed
52
+
53
+ ## Intended uses & limitations
54
+
55
+ More information needed
56
+
57
+ ## Training and evaluation data
58
+
59
+ More information needed
60
+
61
+ ## Training procedure
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 0.0003
67
+ - train_batch_size: 8
68
+ - eval_batch_size: 8
69
+ - seed: 42
70
+ - gradient_accumulation_steps: 2
71
+ - total_train_batch_size: 16
72
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
+ - lr_scheduler_type: linear
74
+ - lr_scheduler_warmup_steps: 200
75
+ - num_epochs: 70
76
+ - mixed_precision_training: Native AMP
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | 2 Precision | 2 Recall | 2 F1-score | 2 Support | 3 Precision | 3 Recall | 3 F1-score | 3 Support | Accuracy | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support | Wer | Mtrix |
81
+ |:-------------:|:-----:|:----:|:---------------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:--------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:------:|:---------------------------------------------------------------------------------------:|
82
+ | 3.9429 | 4.16 | 100 | 3.3748 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 22 | 0.0 | 0.0 | 0.0 | 30 | 0.1011 | 0.6429 | 0.1748 | 14 | 0.0928 | 0.0253 | 0.1607 | 0.0437 | 97 | 0.0146 | 0.0928 | 0.0252 | 97 | 0.9980 | [[0, 1, 2, 3], [0, 0, 0, 0, 31], [1, 0, 0, 0, 22], [2, 3, 0, 0, 27], [3, 5, 0, 0, 9]] |
83
+ | 3.3504 | 8.33 | 200 | 3.1724 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 22 | 0.0 | 0.0 | 0.0 | 30 | 0.1011 | 0.6429 | 0.1748 | 14 | 0.0928 | 0.0253 | 0.1607 | 0.0437 | 97 | 0.0146 | 0.0928 | 0.0252 | 97 | 0.9980 | [[0, 1, 2, 3], [0, 0, 0, 0, 31], [1, 0, 0, 0, 22], [2, 3, 0, 0, 27], [3, 5, 0, 0, 9]] |
84
+ | 3.155 | 12.49 | 300 | 3.1448 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 22 | 0.0 | 0.0 | 0.0 | 30 | 0.1011 | 0.6429 | 0.1748 | 14 | 0.0928 | 0.0253 | 0.1607 | 0.0437 | 97 | 0.0146 | 0.0928 | 0.0252 | 97 | 0.9980 | [[0, 1, 2, 3], [0, 0, 0, 0, 31], [1, 0, 0, 0, 22], [2, 3, 0, 0, 27], [3, 5, 0, 0, 9]] |
85
+ | 3.0282 | 16.65 | 400 | 2.9990 | 0.0 | 0.0 | 0.0 | 31 | 0.2268 | 1.0 | 0.3697 | 22 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 14 | 0.2268 | 0.0567 | 0.25 | 0.0924 | 97 | 0.0514 | 0.2268 | 0.0839 | 97 | 1.0 | [[0, 1, 2, 3], [0, 0, 31, 0, 0], [1, 0, 22, 0, 0], [2, 0, 30, 0, 0], [3, 0, 14, 0, 0]] |
86
+ | 2.744 | 20.82 | 500 | 2.6658 | 0.8378 | 1.0 | 0.9118 | 31 | 0.3889 | 0.6364 | 0.4828 | 22 | 0.4583 | 0.3667 | 0.4074 | 30 | 0.0 | 0.0 | 0.0 | 14 | 0.5773 | 0.4213 | 0.5008 | 0.4505 | 97 | 0.4977 | 0.5773 | 0.5269 | 97 | 1.0 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 6, 14, 2, 0], [2, 0, 19, 11, 0], [3, 0, 3, 11, 0]] |
87
+ | 2.2503 | 24.98 | 600 | 2.0915 | 0.9677 | 0.9677 | 0.9677 | 31 | 0.8571 | 0.8182 | 0.8372 | 22 | 0.875 | 0.9333 | 0.9032 | 30 | 0.9231 | 0.8571 | 0.8889 | 14 | 0.9072 | 0.9057 | 0.8941 | 0.8993 | 97 | 0.9075 | 0.9072 | 0.9068 | 97 | 0.9609 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 1, 18, 2, 1], [2, 0, 2, 28, 0], [3, 0, 0, 2, 12]] |
88
+ | 1.8687 | 29.16 | 700 | 1.7109 | 1.0 | 0.9355 | 0.9667 | 31 | 0.7857 | 1.0 | 0.88 | 22 | 1.0 | 0.9333 | 0.9655 | 30 | 1.0 | 0.8571 | 0.9231 | 14 | 0.9381 | 0.9464 | 0.9315 | 0.9338 | 97 | 0.9514 | 0.9381 | 0.9404 | 97 | 0.9373 | [[0, 1, 2, 3], [0, 29, 2, 0, 0], [1, 0, 22, 0, 0], [2, 0, 2, 28, 0], [3, 0, 2, 0, 12]] |
89
+ | 1.4444 | 33.33 | 800 | 1.3295 | 1.0 | 0.9677 | 0.9836 | 31 | 0.88 | 1.0 | 0.9362 | 22 | 1.0 | 0.9667 | 0.9831 | 30 | 1.0 | 0.9286 | 0.9630 | 14 | 0.9691 | 0.97 | 0.9657 | 0.9664 | 97 | 0.9728 | 0.9691 | 0.9697 | 97 | 0.9142 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 22, 0, 0], [2, 0, 1, 29, 0], [3, 0, 1, 0, 13]] |
90
+ | 0.95 | 37.49 | 900 | 0.8782 | 1.0 | 1.0 | 1.0 | 31 | 0.9167 | 1.0 | 0.9565 | 22 | 1.0 | 0.9333 | 0.9655 | 30 | 0.9286 | 0.9286 | 0.9286 | 14 | 0.9691 | 0.9613 | 0.9655 | 0.9627 | 97 | 0.9708 | 0.9691 | 0.9692 | 97 | 0.8545 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 0, 22, 0, 0], [2, 0, 1, 28, 1], [3, 0, 1, 0, 13]] |
91
+ | 0.5303 | 41.65 | 1000 | 0.4750 | 1.0 | 1.0 | 1.0 | 31 | 0.9167 | 1.0 | 0.9565 | 22 | 1.0 | 0.9333 | 0.9655 | 30 | 1.0 | 1.0 | 1.0 | 14 | 0.9794 | 0.9792 | 0.9833 | 0.9805 | 97 | 0.9811 | 0.9794 | 0.9795 | 97 | 0.6026 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 0, 22, 0, 0], [2, 0, 2, 28, 0], [3, 0, 0, 0, 14]] |
92
+ | 0.3054 | 45.82 | 1100 | 0.2919 | 0.9688 | 1.0 | 0.9841 | 31 | 0.9130 | 0.9545 | 0.9333 | 22 | 1.0 | 0.9 | 0.9474 | 30 | 0.9333 | 1.0 | 0.9655 | 14 | 0.9588 | 0.9538 | 0.9636 | 0.9576 | 97 | 0.9607 | 0.9588 | 0.9586 | 97 | 0.2373 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 1, 21, 0, 0], [2, 0, 2, 27, 1], [3, 0, 0, 0, 14]] |
93
+ | 0.1609 | 49.98 | 1200 | 0.1727 | 1.0 | 1.0 | 1.0 | 31 | 0.88 | 1.0 | 0.9362 | 22 | 1.0 | 0.9 | 0.9474 | 30 | 0.9286 | 0.9286 | 0.9286 | 14 | 0.9588 | 0.9521 | 0.9571 | 0.9530 | 97 | 0.9625 | 0.9588 | 0.9589 | 97 | 0.1646 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 0, 22, 0, 0], [2, 0, 2, 27, 1], [3, 0, 1, 0, 13]] |
94
+ | 0.1204 | 54.16 | 1300 | 0.1430 | 1.0 | 1.0 | 1.0 | 31 | 0.9167 | 1.0 | 0.9565 | 22 | 1.0 | 0.9333 | 0.9655 | 30 | 0.9286 | 0.9286 | 0.9286 | 14 | 0.9691 | 0.9613 | 0.9655 | 0.9627 | 97 | 0.9708 | 0.9691 | 0.9692 | 97 | 0.1370 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 0, 22, 0, 0], [2, 0, 1, 28, 1], [3, 0, 1, 0, 13]] |
95
+ | 0.0924 | 58.33 | 1400 | 0.1494 | 0.9677 | 0.9677 | 0.9677 | 31 | 0.9130 | 0.9545 | 0.9333 | 22 | 1.0 | 0.9333 | 0.9655 | 30 | 0.9333 | 1.0 | 0.9655 | 14 | 0.9588 | 0.9535 | 0.9639 | 0.9580 | 97 | 0.9603 | 0.9588 | 0.9589 | 97 | 0.1581 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 1, 21, 0, 0], [2, 0, 1, 28, 1], [3, 0, 0, 0, 14]] |
96
+ | 0.0596 | 62.49 | 1500 | 0.1484 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9167 | 1.0 | 0.9565 | 22 | 1.0 | 0.9333 | 0.9655 | 30 | 0.9333 | 1.0 | 0.9655 | 14 | 0.9691 | 0.9625 | 0.9753 | 0.9678 | 97 | 0.9715 | 0.9691 | 0.9693 | 97 | 0.1370 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 22, 0, 0], [2, 0, 1, 28, 1], [3, 0, 0, 0, 14]] |
97
+ | 0.0592 | 66.65 | 1600 | 0.1464 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9167 | 1.0 | 0.9565 | 22 | 1.0 | 0.9333 | 0.9655 | 30 | 0.9333 | 1.0 | 0.9655 | 14 | 0.9691 | 0.9625 | 0.9753 | 0.9678 | 97 | 0.9715 | 0.9691 | 0.9693 | 97 | 0.1380 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 22, 0, 0], [2, 0, 1, 28, 1], [3, 0, 0, 0, 14]] |
98
+
99
+
100
+ ### Framework versions
101
+
102
+ - Transformers 4.25.1
103
+ - Pytorch 1.13.0+cu116
104
+ - Datasets 2.8.0
105
+ - Tokenizers 0.13.2