Journey9ni commited on
Commit
61be917
·
verified ·
1 Parent(s): 78687b4

Upload folder using huggingface_hub

Browse files
Files changed (41) hide show
  1. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/README.md +0 -0
  2. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/adapter_config.json +215 -0
  3. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/adapter_model.bin +3 -0
  4. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/config.json +232 -0
  5. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/latest +1 -0
  6. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/non_lora_trainables.bin +3 -0
  7. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_0.pth +3 -0
  8. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_1.pth +3 -0
  9. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_10.pth +3 -0
  10. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_11.pth +3 -0
  11. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_12.pth +3 -0
  12. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_13.pth +3 -0
  13. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_14.pth +3 -0
  14. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_15.pth +3 -0
  15. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_16.pth +3 -0
  16. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_17.pth +3 -0
  17. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_18.pth +3 -0
  18. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_19.pth +3 -0
  19. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_2.pth +3 -0
  20. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_20.pth +3 -0
  21. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_21.pth +3 -0
  22. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_22.pth +3 -0
  23. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_23.pth +3 -0
  24. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_24.pth +3 -0
  25. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_25.pth +3 -0
  26. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_26.pth +3 -0
  27. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_27.pth +3 -0
  28. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_28.pth +3 -0
  29. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_29.pth +3 -0
  30. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_3.pth +3 -0
  31. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_30.pth +3 -0
  32. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_31.pth +3 -0
  33. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_4.pth +3 -0
  34. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_5.pth +3 -0
  35. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_6.pth +3 -0
  36. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_7.pth +3 -0
  37. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_8.pth +3 -0
  38. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_9.pth +3 -0
  39. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/scheduler.pt +3 -0
  40. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/trainer_state.json +0 -0
  41. ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/zero_to_fp32.py +604 -0
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/README.md ADDED
Binary file (377 Bytes). View file
 
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/adapter_config.json ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "checkpoints/LLaVA-Video-7B-Qwen2",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 256,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 128,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "model.layers.20.mlp.down_proj",
18
+ "model.layers.23.mlp.up_proj",
19
+ "model.layers.13.self_attn.k_proj",
20
+ "model.layers.22.self_attn.q_proj",
21
+ "model.layers.23.mlp.down_proj",
22
+ "model.layers.13.self_attn.o_proj",
23
+ "model.layers.3.self_attn.o_proj",
24
+ "model.layers.4.self_attn.k_proj",
25
+ "model.layers.11.mlp.down_proj",
26
+ "model.layers.6.mlp.gate_proj",
27
+ "model.layers.17.mlp.up_proj",
28
+ "model.layers.25.self_attn.k_proj",
29
+ "model.layers.16.mlp.gate_proj",
30
+ "model.layers.18.self_attn.o_proj",
31
+ "model.layers.18.mlp.up_proj",
32
+ "model.layers.2.self_attn.k_proj",
33
+ "model.layers.1.self_attn.o_proj",
34
+ "model.layers.7.self_attn.o_proj",
35
+ "model.layers.3.mlp.up_proj",
36
+ "model.layers.2.self_attn.q_proj",
37
+ "model.layers.5.mlp.down_proj",
38
+ "model.layers.22.mlp.down_proj",
39
+ "model.layers.10.self_attn.q_proj",
40
+ "model.layers.11.self_attn.k_proj",
41
+ "model.layers.4.self_attn.q_proj",
42
+ "model.layers.18.mlp.down_proj",
43
+ "model.layers.23.mlp.gate_proj",
44
+ "model.layers.15.self_attn.v_proj",
45
+ "model.layers.4.mlp.up_proj",
46
+ "model.layers.22.mlp.gate_proj",
47
+ "model.layers.24.self_attn.q_proj",
48
+ "model.layers.17.self_attn.k_proj",
49
+ "model.layers.0.mlp.gate_proj",
50
+ "model.layers.17.mlp.down_proj",
51
+ "model.layers.25.mlp.up_proj",
52
+ "model.layers.3.self_attn.k_proj",
53
+ "model.layers.9.self_attn.k_proj",
54
+ "model.layers.12.mlp.down_proj",
55
+ "model.layers.16.mlp.down_proj",
56
+ "model.layers.7.self_attn.k_proj",
57
+ "model.layers.14.self_attn.o_proj",
58
+ "model.layers.25.self_attn.q_proj",
59
+ "model.layers.8.self_attn.k_proj",
60
+ "model.layers.24.self_attn.o_proj",
61
+ "model.layers.17.self_attn.o_proj",
62
+ "model.layers.2.self_attn.v_proj",
63
+ "model.layers.20.self_attn.o_proj",
64
+ "model.layers.3.mlp.gate_proj",
65
+ "model.layers.0.self_attn.k_proj",
66
+ "model.layers.10.self_attn.o_proj",
67
+ "model.layers.12.self_attn.v_proj",
68
+ "model.layers.15.mlp.gate_proj",
69
+ "model.layers.17.self_attn.v_proj",
70
+ "model.layers.20.mlp.gate_proj",
71
+ "model.layers.26.mlp.gate_proj",
72
+ "model.layers.27.self_attn.o_proj",
73
+ "model.layers.23.self_attn.v_proj",
74
+ "model.layers.11.self_attn.q_proj",
75
+ "model.layers.6.mlp.down_proj",
76
+ "model.layers.9.self_attn.o_proj",
77
+ "model.layers.12.mlp.up_proj",
78
+ "model.layers.8.mlp.gate_proj",
79
+ "model.layers.14.mlp.up_proj",
80
+ "model.layers.19.self_attn.v_proj",
81
+ "model.layers.23.self_attn.o_proj",
82
+ "model.layers.0.self_attn.q_proj",
83
+ "model.layers.19.self_attn.o_proj",
84
+ "model.layers.13.mlp.up_proj",
85
+ "model.layers.19.mlp.gate_proj",
86
+ "model.layers.10.mlp.up_proj",
87
+ "model.layers.9.self_attn.q_proj",
88
+ "model.layers.4.mlp.down_proj",
89
+ "model.layers.14.self_attn.v_proj",
90
+ "model.layers.1.self_attn.k_proj",
91
+ "model.layers.15.self_attn.q_proj",
92
+ "model.layers.20.self_attn.k_proj",
93
+ "model.layers.24.self_attn.k_proj",
94
+ "model.layers.16.mlp.up_proj",
95
+ "model.layers.19.self_attn.q_proj",
96
+ "model.layers.27.self_attn.q_proj",
97
+ "model.layers.4.mlp.gate_proj",
98
+ "model.layers.8.mlp.up_proj",
99
+ "model.layers.5.self_attn.k_proj",
100
+ "model.layers.0.mlp.up_proj",
101
+ "model.layers.5.mlp.up_proj",
102
+ "model.layers.24.mlp.down_proj",
103
+ "model.layers.21.mlp.up_proj",
104
+ "model.layers.27.self_attn.v_proj",
105
+ "model.layers.22.self_attn.k_proj",
106
+ "model.layers.16.self_attn.o_proj",
107
+ "model.layers.25.mlp.down_proj",
108
+ "model.layers.2.mlp.up_proj",
109
+ "model.layers.10.self_attn.k_proj",
110
+ "model.layers.16.self_attn.q_proj",
111
+ "model.layers.23.self_attn.k_proj",
112
+ "model.layers.1.mlp.up_proj",
113
+ "model.layers.26.self_attn.v_proj",
114
+ "model.layers.26.self_attn.q_proj",
115
+ "model.layers.11.self_attn.o_proj",
116
+ "model.layers.2.mlp.down_proj",
117
+ "model.layers.25.self_attn.v_proj",
118
+ "model.layers.4.self_attn.o_proj",
119
+ "model.layers.27.mlp.up_proj",
120
+ "model.layers.7.mlp.gate_proj",
121
+ "model.layers.7.self_attn.q_proj",
122
+ "model.layers.14.self_attn.k_proj",
123
+ "model.layers.1.mlp.down_proj",
124
+ "model.layers.26.mlp.down_proj",
125
+ "model.layers.0.self_attn.v_proj",
126
+ "model.layers.27.mlp.gate_proj",
127
+ "model.layers.19.self_attn.k_proj",
128
+ "model.layers.21.mlp.gate_proj",
129
+ "model.layers.11.mlp.up_proj",
130
+ "model.layers.24.self_attn.v_proj",
131
+ "model.layers.24.mlp.gate_proj",
132
+ "model.layers.18.mlp.gate_proj",
133
+ "model.layers.3.self_attn.q_proj",
134
+ "model.layers.6.self_attn.q_proj",
135
+ "model.layers.21.self_attn.q_proj",
136
+ "model.layers.14.mlp.gate_proj",
137
+ "model.layers.20.mlp.up_proj",
138
+ "model.layers.21.self_attn.v_proj",
139
+ "model.layers.6.self_attn.o_proj",
140
+ "model.layers.27.self_attn.k_proj",
141
+ "model.layers.21.mlp.down_proj",
142
+ "model.layers.12.self_attn.q_proj",
143
+ "model.layers.26.self_attn.o_proj",
144
+ "model.layers.1.mlp.gate_proj",
145
+ "model.layers.4.self_attn.v_proj",
146
+ "model.layers.5.mlp.gate_proj",
147
+ "model.layers.18.self_attn.v_proj",
148
+ "model.layers.8.self_attn.q_proj",
149
+ "model.layers.12.self_attn.k_proj",
150
+ "model.layers.18.self_attn.k_proj",
151
+ "model.layers.6.mlp.up_proj",
152
+ "model.layers.15.self_attn.o_proj",
153
+ "model.layers.5.self_attn.o_proj",
154
+ "model.layers.6.self_attn.k_proj",
155
+ "model.layers.25.self_attn.o_proj",
156
+ "model.layers.24.mlp.up_proj",
157
+ "model.layers.8.mlp.down_proj",
158
+ "model.layers.9.mlp.up_proj",
159
+ "model.layers.0.mlp.down_proj",
160
+ "model.layers.0.self_attn.o_proj",
161
+ "model.layers.22.self_attn.o_proj",
162
+ "model.layers.7.mlp.up_proj",
163
+ "model.layers.21.self_attn.k_proj",
164
+ "model.layers.13.mlp.down_proj",
165
+ "model.layers.2.self_attn.o_proj",
166
+ "model.layers.6.self_attn.v_proj",
167
+ "model.layers.15.self_attn.k_proj",
168
+ "model.layers.9.mlp.gate_proj",
169
+ "model.layers.13.self_attn.v_proj",
170
+ "model.layers.13.mlp.gate_proj",
171
+ "model.layers.8.self_attn.o_proj",
172
+ "model.layers.1.self_attn.v_proj",
173
+ "model.layers.11.self_attn.v_proj",
174
+ "model.layers.7.self_attn.v_proj",
175
+ "model.layers.3.mlp.down_proj",
176
+ "model.layers.15.mlp.down_proj",
177
+ "model.layers.14.self_attn.q_proj",
178
+ "model.layers.21.self_attn.o_proj",
179
+ "model.layers.23.self_attn.q_proj",
180
+ "model.layers.26.mlp.up_proj",
181
+ "model.layers.2.mlp.gate_proj",
182
+ "model.layers.20.self_attn.q_proj",
183
+ "model.layers.14.mlp.down_proj",
184
+ "model.layers.18.self_attn.q_proj",
185
+ "model.layers.1.self_attn.q_proj",
186
+ "model.layers.11.mlp.gate_proj",
187
+ "model.layers.7.mlp.down_proj",
188
+ "model.layers.8.self_attn.v_proj",
189
+ "model.layers.5.self_attn.v_proj",
190
+ "model.layers.10.mlp.down_proj",
191
+ "model.layers.12.self_attn.o_proj",
192
+ "model.layers.15.mlp.up_proj",
193
+ "model.layers.19.mlp.down_proj",
194
+ "model.layers.20.self_attn.v_proj",
195
+ "model.layers.9.mlp.down_proj",
196
+ "model.layers.10.self_attn.v_proj",
197
+ "model.layers.26.self_attn.k_proj",
198
+ "model.layers.27.mlp.down_proj",
199
+ "model.layers.10.mlp.gate_proj",
200
+ "model.layers.22.mlp.up_proj",
201
+ "model.layers.16.self_attn.k_proj",
202
+ "model.layers.12.mlp.gate_proj",
203
+ "model.layers.25.mlp.gate_proj",
204
+ "model.layers.5.self_attn.q_proj",
205
+ "model.layers.17.self_attn.q_proj",
206
+ "model.layers.22.self_attn.v_proj",
207
+ "model.layers.17.mlp.gate_proj",
208
+ "model.layers.3.self_attn.v_proj",
209
+ "model.layers.13.self_attn.q_proj",
210
+ "model.layers.16.self_attn.v_proj",
211
+ "model.layers.9.self_attn.v_proj",
212
+ "model.layers.19.mlp.up_proj"
213
+ ],
214
+ "task_type": "CAUSAL_LM"
215
+ }
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d530eb1037b1788250fe3a2ffdb4090867186534c151ea0feab938272eac1016
3
+ size 646061802
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/config.json ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/LLaVA-Video-7B-Qwen2",
3
+ "add_faster_video": false,
4
+ "add_time_instruction": true,
5
+ "architectures": [
6
+ "LlavaQwenForCausalLM"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 151643,
10
+ "eos_token_id": 151645,
11
+ "faster_token_stride": 10,
12
+ "force_sample": true,
13
+ "freeze_mm_mlp_adapter": false,
14
+ "freeze_mm_vision_resampler": false,
15
+ "fusion_block": "cross_attention",
16
+ "fusion_block_lr": 0.002,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 3584,
19
+ "ignore_index": -100,
20
+ "image_aspect_ratio": "anyres_max_9",
21
+ "image_crop_resolution": null,
22
+ "image_grid_pinpoints": [
23
+ [
24
+ 384,
25
+ 384
26
+ ],
27
+ [
28
+ 384,
29
+ 768
30
+ ],
31
+ [
32
+ 384,
33
+ 1152
34
+ ],
35
+ [
36
+ 384,
37
+ 1536
38
+ ],
39
+ [
40
+ 384,
41
+ 1920
42
+ ],
43
+ [
44
+ 384,
45
+ 2304
46
+ ],
47
+ [
48
+ 768,
49
+ 384
50
+ ],
51
+ [
52
+ 768,
53
+ 768
54
+ ],
55
+ [
56
+ 768,
57
+ 1152
58
+ ],
59
+ [
60
+ 768,
61
+ 1536
62
+ ],
63
+ [
64
+ 768,
65
+ 1920
66
+ ],
67
+ [
68
+ 768,
69
+ 2304
70
+ ],
71
+ [
72
+ 1152,
73
+ 384
74
+ ],
75
+ [
76
+ 1152,
77
+ 768
78
+ ],
79
+ [
80
+ 1152,
81
+ 1152
82
+ ],
83
+ [
84
+ 1152,
85
+ 1536
86
+ ],
87
+ [
88
+ 1152,
89
+ 1920
90
+ ],
91
+ [
92
+ 1152,
93
+ 2304
94
+ ],
95
+ [
96
+ 1536,
97
+ 384
98
+ ],
99
+ [
100
+ 1536,
101
+ 768
102
+ ],
103
+ [
104
+ 1536,
105
+ 1152
106
+ ],
107
+ [
108
+ 1536,
109
+ 1536
110
+ ],
111
+ [
112
+ 1536,
113
+ 1920
114
+ ],
115
+ [
116
+ 1536,
117
+ 2304
118
+ ],
119
+ [
120
+ 1920,
121
+ 384
122
+ ],
123
+ [
124
+ 1920,
125
+ 768
126
+ ],
127
+ [
128
+ 1920,
129
+ 1152
130
+ ],
131
+ [
132
+ 1920,
133
+ 1536
134
+ ],
135
+ [
136
+ 1920,
137
+ 1920
138
+ ],
139
+ [
140
+ 1920,
141
+ 2304
142
+ ],
143
+ [
144
+ 2304,
145
+ 384
146
+ ],
147
+ [
148
+ 2304,
149
+ 768
150
+ ],
151
+ [
152
+ 2304,
153
+ 1152
154
+ ],
155
+ [
156
+ 2304,
157
+ 1536
158
+ ],
159
+ [
160
+ 2304,
161
+ 1920
162
+ ],
163
+ [
164
+ 2304,
165
+ 2304
166
+ ]
167
+ ],
168
+ "image_split_resolution": null,
169
+ "image_token_index": 151646,
170
+ "initializer_range": 0.02,
171
+ "intermediate_size": 18944,
172
+ "max_position_embeddings": 32768,
173
+ "max_window_layers": 28,
174
+ "mm_hidden_size": 1152,
175
+ "mm_newline_position": "grid",
176
+ "mm_patch_merge_type": "spatial_unpad",
177
+ "mm_projector_lr": null,
178
+ "mm_projector_type": "mlp2x_gelu",
179
+ "mm_resampler_type": null,
180
+ "mm_spatial_pool_mode": "bilinear",
181
+ "mm_spatial_pool_stride": 2,
182
+ "mm_spatial_tower": "cut3r",
183
+ "mm_tunable_parts": "mm_vision_tower,mm_mlp_adapter,mm_language_model",
184
+ "mm_use_im_patch_token": false,
185
+ "mm_use_im_start_end": false,
186
+ "mm_vision_select_feature": "patch",
187
+ "mm_vision_select_layer": -2,
188
+ "mm_vision_tower": "google/siglip-so400m-patch14-384",
189
+ "mm_vision_tower_lr": null,
190
+ "model_type": "llava",
191
+ "num_attention_heads": 28,
192
+ "num_hidden_layers": 28,
193
+ "num_key_value_heads": 4,
194
+ "pos_skipping_range": 4096,
195
+ "projector_hidden_act": "gelu",
196
+ "rms_norm_eps": 1e-06,
197
+ "rope_scaling": null,
198
+ "rope_theta": 1000000.0,
199
+ "sliding_window": 131072,
200
+ "spatial_tower": "cut3r",
201
+ "text_config": {
202
+ "model_type": "llama"
203
+ },
204
+ "tie_word_embeddings": false,
205
+ "tokenizer_model_max_length": 32768,
206
+ "tokenizer_padding_side": "right",
207
+ "torch_dtype": "bfloat16",
208
+ "transformers_version": "4.40.0.dev0",
209
+ "tune_fusion_block": true,
210
+ "tune_mm_mlp_adapter": true,
211
+ "tune_mm_vision_resampler": false,
212
+ "tune_spatial_tower": false,
213
+ "unfreeze_mm_vision_tower": false,
214
+ "use_cache": false,
215
+ "use_mm_proj": true,
216
+ "use_pos_skipping": false,
217
+ "use_sliding_window": false,
218
+ "vision_config": {
219
+ "hidden_size": 1024,
220
+ "image_size": 336,
221
+ "intermediate_size": 4096,
222
+ "model_type": "clip_vision_model",
223
+ "num_attention_heads": 16,
224
+ "num_hidden_layers": 24,
225
+ "patch_size": 14,
226
+ "projection_dim": 768,
227
+ "vocab_size": 32000
228
+ },
229
+ "vision_feature_layer": -2,
230
+ "vision_feature_select_strategy": "default",
231
+ "vision_tower_pretrained": null
232
+ }
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step707
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31d0793d6b83f2efc66cc3945064e04053054cc900799a17caafbd9911ec2152
3
+ size 53464972
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d36d89e1330ee2b1d4b2aa755856a7d859c13ef0c42543c351373c89098503b1
3
+ size 14256
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d9d4155bb73e7d3b425749b3461ae9c674f20c877d8bf36fdb0b2f244d5251f
3
+ size 14256
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_10.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b7f7348cd5d62e5d520828a7236e4ecb80da4166bfbb74c06c254976681c841
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_11.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:248d003676a4cc2cbf4a1284f94cbf1959b4b8c2dfb5dba38612fd5776b90d5c
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_12.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6377ebef2c642a5c4313426570bfc72bc38e4c01c8f12f43583524d7eea07e5a
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_13.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d58bb1be5f1c976405ecc9c0ab3cacb31e71cf17691ddf5c5ac557e470a52341
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_14.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abb821e044c917764860abdf6f05f157569286b8bdf43b61ca0d6aef2a6e144e
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_15.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd90db125656aff198f47d5858fc8bf4cdefd5612b47b16d000f8d6b0e00976e
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_16.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ececb857e2ee2506970a77d377048ca4f941add1f0e3929ac5a6e2c0122e855b
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_17.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66aeca058fc1f82301425d028198191fc0bf6a230af18a3ad6c70712814d1d6f
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_18.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:186ab004ca5742adb866c67dbba48046cf9e81960ac4ac82f1a6de92e4d44fcb
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_19.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad6e1901c262faf271ce70ba6d55b5279520bd1941b61f7db8c3f0871c98b20
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd2041c0d53e0d5b37113d2bf3e8a538aa3c03ef77719bdf0ab2ae01391d5e28
3
+ size 14256
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_20.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:175ec70a0d1571c2a80dd460ee2fcdf8c1f5563cce0a2a12b06987df8b3e0e38
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_21.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9386d36206ecdf8448af832d0c65d3e012e9986ec443b5eac69a9b26c29fdd8f
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_22.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1396d292133d3ebbb63e831407c11b0a393a2dc8daa81d8a74a7dbb2f13c2cd
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_23.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ad90e2d89994b9c63768d2cb3a0952f90b24faec86e87223aedb61ecf172736
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_24.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b2251a2b1bf61a38fe4329b814b57180ad6a667aaa4f9b50feb1a0b2081c380
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_25.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a6e713729e0c6d6325e200ad2def22c1797ec42eb4fccc019f0a6812295d5c2
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_26.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5ebca4191ac5173da35c591d732fa9c1bfeb14a22fc9ad20a2ad27d3d76991a
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_27.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:472e19a8203030ff6ca593402b5b7c42127fd289ed8fa06f9198985b24ca9aa0
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_28.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f862ce60ccaa72bd0a62b90264b811acf53f5a5059d9c40895ee11e42d6d5f57
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_29.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:662904a83ff8036bef9019a7de90ed7ec25614670e47135ba879f09344637f96
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:402f9be1cb2dd2e180401e6799bc406cfaef270a7f52a1170449b0663e642246
3
+ size 14256
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_30.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e54e51065bd072c9d025808a8f30d73bcbc1beb924de05f326a03720c8f4359
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_31.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4645d4846ed92a7d093af41d82ed2462b0501190835dc562ff5255b9032c85f
3
+ size 14262
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6615b629095828ec92dc57a8b81c53b78b97e10ffc56f2ad2bd5faf9ca62ec3
3
+ size 14256
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb02568dc0c7fa711c57a3a68b0cbcaef3c403a13c7b810b5652a317d2458edf
3
+ size 14256
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1eb4d561674e03e6edfe08cede15fc4b4aae489d28fb28879d0c4a12a6eab957
3
+ size 14256
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f85a8efe0965179462561f6f0fb646c4399aa10c84ee3e9e03f1acb7b25afb06
3
+ size 14256
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_8.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd92a4fef47d7dc9e362cd5ac83f6dda1e594262cb7fdfb18745294d75fc2ecb
3
+ size 14256
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/rng_state_9.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b060ae0f8fed9f14d3ea29498d9679cfacd093b74b6946be3154c42f13f8627c
3
+ size 14256
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f2d08b16af46d1a7a8883881ec6262cf4be1211815f5311ad397ae8a960c26c
3
+ size 1064
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
ckpt/llavanext-google_siglip-so400m-patch14-384-Qwen_Qwen2-7B-Instruct-cut3r_lora_diff_lr_03_12/checkpoint-707/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)