File size: 7,648 Bytes
7c071a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python3
# ==============================================================================
#
# Copyright (C) 2023 Sophgo Technologies Inc.  All rights reserved.
#
# TPU-MLIR is licensed under the 2-Clause BSD License except for the
# third-party components.
#
# ==============================================================================

import os
import torch
import argparse
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer
torch.set_grad_enabled(False)
torch.set_num_threads(72)

parser = argparse.ArgumentParser(description='export onnx.')
parser.add_argument('--model_path', type=str, help='path to the torch model.')
parser.add_argument('--guess_len', type=int, default=8, help='guess length')
parser.add_argument('--device', required=False, type=str, choices=["cpu", "cuda"], default="cuda")
parser.add_argument('--generation_mode', type=str, choices=["basic", "sample"], help='mode to the generate token.')

args = parser.parse_args()

model_path = args.model_path
folder = f"./tmp/onnx"

device = torch.device(args.device)
generation_mode = args.generation_mode

origin_model = AutoModelForCausalLM.from_pretrained(
    model_path, trust_remote_code=True,
    torch_dtype=torch.bfloat16, device_map="auto").eval()

for param in origin_model.parameters():
    param.requires_grad = False

config = origin_model.config
transformer = origin_model.transformer
layers = transformer.h

SEQ_LENGTH = config.seq_length
GUESS_LEN = args.guess_len
NUM_LAYERS = config.num_hidden_layers
HIDDEN_SIZE = config.hidden_size
NUM_ATTENTION_HEADS = config.num_attention_heads
HEAD_DIM = HIDDEN_SIZE // NUM_ATTENTION_HEADS

print(f'Layers: {NUM_LAYERS}\nHidden size: {HIDDEN_SIZE}\n')

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

class Embedding(torch.nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, input_ids):
        out = transformer.wte(input_ids)
        return out.float()


class QwenBlock(torch.nn.Module):

    def __init__(self, layer_id):
        super().__init__()
        self.layer_id = layer_id
        self.layer = layers[layer_id]
        self.rotary_emb = transformer.rotary_emb(SEQ_LENGTH)
        self.cos_emb = self.rotary_emb[0].view(SEQ_LENGTH, HEAD_DIM)
        self.sin_emb = self.rotary_emb[1].view(SEQ_LENGTH, HEAD_DIM)

    def forward(self, hidden_states, position_ids, attention_mask):
        cos_pos = self.cos_emb[position_ids].unsqueeze(2)
        sin_pos = self.sin_emb[position_ids].unsqueeze(2)
        hidden_states, past_kv = self.layer(
            hidden_states,
            attention_mask=attention_mask,
            rotary_pos_emb_list=[[cos_pos, sin_pos]],
            use_cache=True)
        present_k, present_v = past_kv
        return hidden_states.float(), present_k.float(), present_v.float()


class QwenBlockCache(torch.nn.Module):

    def __init__(self, layer_id):
        super().__init__()
        self.layer_id = layer_id
        self.layer = layers[layer_id]
        self.rotary_emb = transformer.rotary_emb(SEQ_LENGTH)
        self.cos_emb = self.rotary_emb[0].view(SEQ_LENGTH, HEAD_DIM)
        self.sin_emb = self.rotary_emb[1].view(SEQ_LENGTH, HEAD_DIM)

    def forward(self, hidden_states, position_ids, attention_mask, past_k,
                past_v):
        cos_pos = self.cos_emb[position_ids].unsqueeze(2)
        sin_pos = self.sin_emb[position_ids].unsqueeze(2)
        hidden_states, past_kv = self.layer(
            hidden_states,
            layer_past=(past_k, past_v),
            attention_mask=attention_mask,
            rotary_pos_emb_list=[[cos_pos, sin_pos]],
            use_cache=True)
        present_k, present_v = past_kv
        return hidden_states.float(), present_k.float(), present_v.float()


class LmHead(torch.nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, hidden_states):
        hidden_states = transformer.ln_f(hidden_states)
        m_logits = origin_model.lm_head(hidden_states)
        _, token = torch.topk(m_logits.float(), 1)
        return token

    
# refs:https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py
class LmHeadTopk(torch.nn.Module):

    def __init__(self, top_k = 50, top_p = 0.8, min_tokens_to_keep = 5):
        super().__init__()
        self.top_k = top_k
        self.top_p = top_p
        self.min_tokens_to_keep = min_tokens_to_keep
        self.keep_matrix = torch.zeros((1, self.top_k), dtype=torch.bool)
        self.keep_matrix[0, :self.min_tokens_to_keep] = True

    def forward(self, hidden_states):
        hidden_states = transformer.ln_f(hidden_states)
        m_logits = origin_model.lm_head(hidden_states)
        logits, token = torch.topk(m_logits.float(), self.top_k)

        # top_p
        cumulative_probs = logits.softmax(dim=1).cumsum(dim=1)
        mask = cumulative_probs < self.top_p
        mask = mask + self.keep_matrix
        filtered_logits = torch.where(mask, logits, torch.FloatTensor([-1000.]))
        probs = filtered_logits.softmax(dim=1)
        return probs, token


def convert_block(layer_id):
    model = QwenBlock(layer_id)
    hidden_states = torch.randn(
        (1, SEQ_LENGTH, HIDDEN_SIZE)).bfloat16().to(device)
    position_ids = torch.tensor(
        [range(SEQ_LENGTH)], dtype=torch.long).to(device)
    attention_mask = torch.randn(
        (1, 1, SEQ_LENGTH, SEQ_LENGTH)).bfloat16().to(device)
    
    torch.onnx.export(
        model, (hidden_states, position_ids, attention_mask),
        f'{folder}/block_{layer_id}.onnx',
        verbose=False,
        input_names=['input_states', 'position_ids', 'attention_mask'],
        output_names=['hidden_states', 'past_k', 'past_v'],
        do_constant_folding=True,
        opset_version=15)


def convert_block_cache(layer_id):
    model = QwenBlockCache(layer_id)
    hidden_states = torch.randn((1, GUESS_LEN, HIDDEN_SIZE)).bfloat16().to(device)
    position_ids = torch.tensor([range(GUESS_LEN)], dtype=torch.long).to(device)
    attention_mask = torch.ones(
        (1, 1, GUESS_LEN, SEQ_LENGTH + GUESS_LEN)).bfloat16().to(device)
    past_k = torch.randn((1, SEQ_LENGTH, NUM_ATTENTION_HEADS, HEAD_DIM)).bfloat16().to(device)
    past_v = torch.randn((1, SEQ_LENGTH, NUM_ATTENTION_HEADS, HEAD_DIM)).bfloat16().to(device)

    torch.onnx.export(
        model, (hidden_states, position_ids, attention_mask, past_k, past_v),
        f'{folder}/block_cache_{layer_id}.onnx',
        verbose=False,
        input_names=[
            'input_states', 'position_ids', 'attention_mask', 'history_k',
            'history_v'
        ],
        output_names=['hidden_states', 'past_k', 'past_v'],
        do_constant_folding=True,
        opset_version=15)


def convert_embedding():
    model = Embedding()
    input_ids = torch.tensor([range(SEQ_LENGTH)]).to(device)
    module = torch.jit.trace(model.forward, input_ids)
    torch.jit.save(module, f'{folder}/embedding.pt')


def convert_lm_head():
    if generation_mode == "basic":
        model = LmHead()
    elif generation_mode == "sample":
        model = LmHeadTopk()
    input = torch.randn(GUESS_LEN, HIDDEN_SIZE).bfloat16().to(device)
    module = torch.jit.trace(model.forward, input)
    torch.jit.save(module, f'{folder}/lm_head.pt')


# create folder to store onnx
if not os.path.exists(folder):
    os.makedirs(folder)

# export models
print(f'Convert block & block_cache')
for i in tqdm(range(NUM_LAYERS)):
    convert_block(i)
    convert_block_cache(i)

print(f'Convert embedding')
convert_embedding()

print(f'Convert lm_head')
convert_lm_head()