File size: 1,833 Bytes
e2e36fe
 
 
 
f27c12d
e2e36fe
f0405b8
e2e36fe
 
 
 
 
 
be47a88
e2e36fe
be47a88
e2e36fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f27c12d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
tags:
- generated_from_trainer
base_model: Josephgflowers/TinyLlama-Cinder-Tiny-Agent
model-index:
- name: TinyLlama-Cinder-Agent-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# TinyLlama-Cinder-New-Tokenizer-Test

This model is a fine-tuned version of [Josephgflowers/TinyLlama-Cinder-Tiny-Agent](https://huggingface.co/Josephgflowers/TinyLlama-Cinder-Tiny-Agent) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.41.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Josephgflowers__TinyLlama-Cinder-Agent-v1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |39.17|
|AI2 Reasoning Challenge (25-Shot)|34.90|
|HellaSwag (10-Shot)              |53.87|
|MMLU (5-Shot)                    |26.89|
|TruthfulQA (0-shot)              |39.08|
|Winogrande (5-shot)              |59.12|
|GSM8k (5-shot)                   |21.15|