Jorge Lopez Grisman commited on
Commit
b566c06
1 Parent(s): ae6129f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -18
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
- language:
3
- - en
4
  license: apache-2.0
 
 
5
  datasets:
6
  - conll2003
7
  metrics:
@@ -10,7 +10,7 @@ metrics:
10
  - f1
11
  - accuracy
12
  model-index:
13
- - name: albert-base-v2
14
  results:
15
  - task:
16
  name: Token Classification
@@ -18,18 +18,18 @@ model-index:
18
  dataset:
19
  name: conll2003
20
  type: conll2003
21
- args: default
22
  metrics:
23
- - name: precision
24
  type: precision
25
  value: 0.9252213840603477
26
- - name: recall
27
  type: recall
28
  value: 0.9329732113328189
29
- - name: f1
30
  type: f1
31
  value: 0.9290811285541773
32
- - name: accuracy
33
  type: accuracy
34
  value: 0.9848205157332728
35
  ---
@@ -37,14 +37,15 @@ model-index:
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
  should probably proofread and complete it, then remove this comment. -->
39
 
40
- # albert-base-v2
41
 
42
  This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the conll2003 dataset.
43
  It achieves the following results on the evaluation set:
44
- - precision: 0.9252
45
- - recall: 0.9330
46
- - f1: 0.9291
47
- - accuracy: 0.9848
 
48
 
49
  ## Model description
50
 
@@ -63,12 +64,24 @@ More information needed
63
  ### Training hyperparameters
64
 
65
  The following hyperparameters were used during training:
66
- - num_train_epochs: 5
67
- - train_batch_size: 16
68
  - learning_rate: 2e-05
69
- - weight_decay_rate: 0.01
70
- - num_warmup_steps: 0
71
- - fp16: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  ### Framework versions
74
 
 
1
  ---
 
 
2
  license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
  datasets:
6
  - conll2003
7
  metrics:
 
10
  - f1
11
  - accuracy
12
  model-index:
13
+ - name: albert-base-v2-finetuned-ner
14
  results:
15
  - task:
16
  name: Token Classification
 
18
  dataset:
19
  name: conll2003
20
  type: conll2003
21
+ args: conll2003
22
  metrics:
23
+ - name: Precision
24
  type: precision
25
  value: 0.9252213840603477
26
+ - name: Recall
27
  type: recall
28
  value: 0.9329732113328189
29
+ - name: F1
30
  type: f1
31
  value: 0.9290811285541773
32
+ - name: Accuracy
33
  type: accuracy
34
  value: 0.9848205157332728
35
  ---
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
  should probably proofread and complete it, then remove this comment. -->
39
 
40
+ # albert-base-v2-finetuned-ner
41
 
42
  This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the conll2003 dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.0626
45
+ - Precision: 0.9252
46
+ - Recall: 0.9330
47
+ - F1: 0.9291
48
+ - Accuracy: 0.9848
49
 
50
  ## Model description
51
 
 
64
  ### Training hyperparameters
65
 
66
  The following hyperparameters were used during training:
 
 
67
  - learning_rate: 2e-05
68
+ - train_batch_size: 64
69
+ - eval_batch_size: 64
70
+ - seed: 42
71
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
+ - lr_scheduler_type: linear
73
+ - num_epochs: 5
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | No log | 1.0 | 220 | 0.0863 | 0.8827 | 0.8969 | 0.8898 | 0.9773 |
80
+ | No log | 2.0 | 440 | 0.0652 | 0.8951 | 0.9199 | 0.9073 | 0.9809 |
81
+ | 0.1243 | 3.0 | 660 | 0.0626 | 0.9191 | 0.9208 | 0.9200 | 0.9827 |
82
+ | 0.1243 | 4.0 | 880 | 0.0585 | 0.9227 | 0.9281 | 0.9254 | 0.9843 |
83
+ | 0.0299 | 5.0 | 1100 | 0.0626 | 0.9252 | 0.9330 | 0.9291 | 0.9848 |
84
+
85
 
86
  ### Framework versions
87