Jorge Lopez Grisman
commited on
Commit
•
b566c06
1
Parent(s):
ae6129f
update model card README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
license: apache-2.0
|
|
|
|
|
5 |
datasets:
|
6 |
- conll2003
|
7 |
metrics:
|
@@ -10,7 +10,7 @@ metrics:
|
|
10 |
- f1
|
11 |
- accuracy
|
12 |
model-index:
|
13 |
-
- name: albert-base-v2
|
14 |
results:
|
15 |
- task:
|
16 |
name: Token Classification
|
@@ -18,18 +18,18 @@ model-index:
|
|
18 |
dataset:
|
19 |
name: conll2003
|
20 |
type: conll2003
|
21 |
-
args:
|
22 |
metrics:
|
23 |
-
- name:
|
24 |
type: precision
|
25 |
value: 0.9252213840603477
|
26 |
-
- name:
|
27 |
type: recall
|
28 |
value: 0.9329732113328189
|
29 |
-
- name:
|
30 |
type: f1
|
31 |
value: 0.9290811285541773
|
32 |
-
- name:
|
33 |
type: accuracy
|
34 |
value: 0.9848205157332728
|
35 |
---
|
@@ -37,14 +37,15 @@ model-index:
|
|
37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
38 |
should probably proofread and complete it, then remove this comment. -->
|
39 |
|
40 |
-
# albert-base-v2
|
41 |
|
42 |
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the conll2003 dataset.
|
43 |
It achieves the following results on the evaluation set:
|
44 |
-
-
|
45 |
-
-
|
46 |
-
-
|
47 |
-
-
|
|
|
48 |
|
49 |
## Model description
|
50 |
|
@@ -63,12 +64,24 @@ More information needed
|
|
63 |
### Training hyperparameters
|
64 |
|
65 |
The following hyperparameters were used during training:
|
66 |
-
- num_train_epochs: 5
|
67 |
-
- train_batch_size: 16
|
68 |
- learning_rate: 2e-05
|
69 |
-
-
|
70 |
-
-
|
71 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
### Framework versions
|
74 |
|
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
datasets:
|
6 |
- conll2003
|
7 |
metrics:
|
|
|
10 |
- f1
|
11 |
- accuracy
|
12 |
model-index:
|
13 |
+
- name: albert-base-v2-finetuned-ner
|
14 |
results:
|
15 |
- task:
|
16 |
name: Token Classification
|
|
|
18 |
dataset:
|
19 |
name: conll2003
|
20 |
type: conll2003
|
21 |
+
args: conll2003
|
22 |
metrics:
|
23 |
+
- name: Precision
|
24 |
type: precision
|
25 |
value: 0.9252213840603477
|
26 |
+
- name: Recall
|
27 |
type: recall
|
28 |
value: 0.9329732113328189
|
29 |
+
- name: F1
|
30 |
type: f1
|
31 |
value: 0.9290811285541773
|
32 |
+
- name: Accuracy
|
33 |
type: accuracy
|
34 |
value: 0.9848205157332728
|
35 |
---
|
|
|
37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
38 |
should probably proofread and complete it, then remove this comment. -->
|
39 |
|
40 |
+
# albert-base-v2-finetuned-ner
|
41 |
|
42 |
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the conll2003 dataset.
|
43 |
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 0.0626
|
45 |
+
- Precision: 0.9252
|
46 |
+
- Recall: 0.9330
|
47 |
+
- F1: 0.9291
|
48 |
+
- Accuracy: 0.9848
|
49 |
|
50 |
## Model description
|
51 |
|
|
|
64 |
### Training hyperparameters
|
65 |
|
66 |
The following hyperparameters were used during training:
|
|
|
|
|
67 |
- learning_rate: 2e-05
|
68 |
+
- train_batch_size: 64
|
69 |
+
- eval_batch_size: 64
|
70 |
+
- seed: 42
|
71 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
72 |
+
- lr_scheduler_type: linear
|
73 |
+
- num_epochs: 5
|
74 |
+
|
75 |
+
### Training results
|
76 |
+
|
77 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
78 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
79 |
+
| No log | 1.0 | 220 | 0.0863 | 0.8827 | 0.8969 | 0.8898 | 0.9773 |
|
80 |
+
| No log | 2.0 | 440 | 0.0652 | 0.8951 | 0.9199 | 0.9073 | 0.9809 |
|
81 |
+
| 0.1243 | 3.0 | 660 | 0.0626 | 0.9191 | 0.9208 | 0.9200 | 0.9827 |
|
82 |
+
| 0.1243 | 4.0 | 880 | 0.0585 | 0.9227 | 0.9281 | 0.9254 | 0.9843 |
|
83 |
+
| 0.0299 | 5.0 | 1100 | 0.0626 | 0.9252 | 0.9330 | 0.9291 | 0.9848 |
|
84 |
+
|
85 |
|
86 |
### Framework versions
|
87 |
|