JingyeChen commited on
Commit
9b2a253
·
1 Parent(s): 8bb5f70
layout_planner_m1/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 4096,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 32,
17
+ "pad_token_id": 0,
18
+ "pretraining_tp": 1,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.28.1",
24
+ "use_cache": true,
25
+ "vocab_size": 32000
26
+ }
layout_planner_m1/generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": 2,
4
+ "max_length": 4096,
5
+ "pad_token_id": 0,
6
+ "temperature": 0.9,
7
+ "top_p": 0.6,
8
+ "transformers_version": "4.28.1"
9
+ }
layout_planner_m1/pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bdf47d029f2dac9dace788703e64302bbc35da51ac174836b331a6fc32b446e
3
+ size 9877989586
layout_planner_m1/pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:899f2dffbb3988d1d5018fabb7d4f811d507ba53a49f963cb563ab0b0a85d4b3
3
+ size 9894801014
layout_planner_m1/pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:621323abc17186718c18e1a61f70ae649002e6a2c1d71498dfb3638c777aca64
3
+ size 7180990649
layout_planner_m1/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26953670656
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
328
+ "model.norm.weight": "pytorch_model-00003-of-00003.bin"
329
+ }
330
+ }
layout_planner_m1/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
layout_planner_m1/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
layout_planner_m1/tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": false,
22
+ "model_max_length": 2048,
23
+ "pad_token": null,
24
+ "padding_side": "right",
25
+ "sp_model_kwargs": {},
26
+ "tokenizer_class": "LlamaTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
layout_planner_m1/trainer_state.json ADDED
@@ -0,0 +1,2797 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 5.97092084006462,
5
+ "global_step": 462,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.01,
12
+ "learning_rate": 1.4285714285714286e-06,
13
+ "loss": 2.1703,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.03,
18
+ "learning_rate": 2.8571428571428573e-06,
19
+ "loss": 2.1529,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.04,
24
+ "learning_rate": 4.2857142857142855e-06,
25
+ "loss": 1.4343,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.05,
30
+ "learning_rate": 5.7142857142857145e-06,
31
+ "loss": 1.3822,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.06,
36
+ "learning_rate": 7.1428571428571436e-06,
37
+ "loss": 1.259,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.08,
42
+ "learning_rate": 8.571428571428571e-06,
43
+ "loss": 1.231,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.09,
48
+ "learning_rate": 1e-05,
49
+ "loss": 1.1535,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.1,
54
+ "learning_rate": 1.1428571428571429e-05,
55
+ "loss": 1.1701,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.12,
60
+ "learning_rate": 1.2857142857142859e-05,
61
+ "loss": 1.1408,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.13,
66
+ "learning_rate": 1.4285714285714287e-05,
67
+ "loss": 1.1468,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.14,
72
+ "learning_rate": 1.5714285714285715e-05,
73
+ "loss": 1.1389,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.16,
78
+ "learning_rate": 1.7142857142857142e-05,
79
+ "loss": 1.0866,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.17,
84
+ "learning_rate": 1.8571428571428575e-05,
85
+ "loss": 1.0794,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.18,
90
+ "learning_rate": 2e-05,
91
+ "loss": 1.0941,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.19,
96
+ "learning_rate": 1.9999754126376247e-05,
97
+ "loss": 1.0402,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.21,
102
+ "learning_rate": 1.9999016517595752e-05,
103
+ "loss": 1.0839,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.22,
108
+ "learning_rate": 1.9997787209930222e-05,
109
+ "loss": 1.0533,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.23,
114
+ "learning_rate": 1.9996066263830533e-05,
115
+ "loss": 1.0485,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.25,
120
+ "learning_rate": 1.9993853763923724e-05,
121
+ "loss": 1.0572,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.26,
126
+ "learning_rate": 1.999114981900887e-05,
127
+ "loss": 1.0493,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.27,
132
+ "learning_rate": 1.9987954562051724e-05,
133
+ "loss": 1.077,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.28,
138
+ "learning_rate": 1.998426815017817e-05,
139
+ "loss": 1.0676,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.3,
144
+ "learning_rate": 1.9980090764666486e-05,
145
+ "loss": 1.0695,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.31,
150
+ "learning_rate": 1.9975422610938463e-05,
151
+ "loss": 1.0383,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.32,
156
+ "learning_rate": 1.9970263918549274e-05,
157
+ "loss": 1.0036,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.34,
162
+ "learning_rate": 1.9964614941176194e-05,
163
+ "loss": 1.0124,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.35,
168
+ "learning_rate": 1.9958475956606133e-05,
169
+ "loss": 1.0127,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.36,
174
+ "learning_rate": 1.995184726672197e-05,
175
+ "loss": 0.9904,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.37,
180
+ "learning_rate": 1.9944729197487702e-05,
181
+ "loss": 1.0295,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.39,
186
+ "learning_rate": 1.9937122098932428e-05,
187
+ "loss": 1.0293,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.4,
192
+ "learning_rate": 1.992902634513312e-05,
193
+ "loss": 0.9826,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.41,
198
+ "learning_rate": 1.9920442334196248e-05,
199
+ "loss": 0.9924,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.43,
204
+ "learning_rate": 1.9911370488238185e-05,
205
+ "loss": 0.9813,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.44,
210
+ "learning_rate": 1.9901811253364458e-05,
211
+ "loss": 0.9965,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.45,
216
+ "learning_rate": 1.989176509964781e-05,
217
+ "loss": 1.0157,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.47,
222
+ "learning_rate": 1.988123252110509e-05,
223
+ "loss": 1.0625,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.48,
228
+ "learning_rate": 1.9870214035672945e-05,
229
+ "loss": 1.0077,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.49,
234
+ "learning_rate": 1.985871018518236e-05,
235
+ "loss": 0.9727,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.5,
240
+ "learning_rate": 1.984672153533202e-05,
241
+ "loss": 0.9996,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.52,
246
+ "learning_rate": 1.9834248675660484e-05,
247
+ "loss": 1.0046,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.53,
252
+ "learning_rate": 1.982129221951719e-05,
253
+ "loss": 0.9891,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.54,
258
+ "learning_rate": 1.9807852804032306e-05,
259
+ "loss": 1.1151,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.56,
264
+ "learning_rate": 1.9793931090085385e-05,
265
+ "loss": 0.9895,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.57,
270
+ "learning_rate": 1.9779527762272877e-05,
271
+ "loss": 0.9969,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.58,
276
+ "learning_rate": 1.976464352887447e-05,
277
+ "loss": 0.9717,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.59,
282
+ "learning_rate": 1.9749279121818235e-05,
283
+ "loss": 1.0397,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.61,
288
+ "learning_rate": 1.973343529664467e-05,
289
+ "loss": 0.978,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.62,
294
+ "learning_rate": 1.971711283246951e-05,
295
+ "loss": 0.9927,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.63,
300
+ "learning_rate": 1.9700312531945444e-05,
301
+ "loss": 0.9446,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.65,
306
+ "learning_rate": 1.9683035221222617e-05,
307
+ "loss": 0.9793,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.66,
312
+ "learning_rate": 1.9665281749908034e-05,
313
+ "loss": 0.9999,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.67,
318
+ "learning_rate": 1.964705299102376e-05,
319
+ "loss": 0.9607,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.68,
324
+ "learning_rate": 1.9628349840963997e-05,
325
+ "loss": 0.9746,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.7,
330
+ "learning_rate": 1.9609173219450998e-05,
331
+ "loss": 0.9671,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.71,
336
+ "learning_rate": 1.958952406948985e-05,
337
+ "loss": 0.9879,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.72,
342
+ "learning_rate": 1.956940335732209e-05,
343
+ "loss": 0.982,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.74,
348
+ "learning_rate": 1.9548812072378208e-05,
349
+ "loss": 0.945,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.75,
354
+ "learning_rate": 1.9527751227228964e-05,
355
+ "loss": 0.9689,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.76,
360
+ "learning_rate": 1.950622185753563e-05,
361
+ "loss": 0.9955,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.78,
366
+ "learning_rate": 1.9484225021999032e-05,
367
+ "loss": 0.9633,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.79,
372
+ "learning_rate": 1.9461761802307494e-05,
373
+ "loss": 0.966,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.8,
378
+ "learning_rate": 1.9438833303083677e-05,
379
+ "loss": 0.9962,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.81,
384
+ "learning_rate": 1.941544065183021e-05,
385
+ "loss": 1.0164,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.83,
390
+ "learning_rate": 1.939158499887428e-05,
391
+ "loss": 0.9462,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.84,
396
+ "learning_rate": 1.9367267517311057e-05,
397
+ "loss": 1.0057,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.85,
402
+ "learning_rate": 1.9342489402945997e-05,
403
+ "loss": 0.9601,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.87,
408
+ "learning_rate": 1.9317251874236066e-05,
409
+ "loss": 0.9497,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.88,
414
+ "learning_rate": 1.9291556172229784e-05,
415
+ "loss": 1.0107,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.89,
420
+ "learning_rate": 1.9265403560506223e-05,
421
+ "loss": 0.951,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.9,
426
+ "learning_rate": 1.9238795325112867e-05,
427
+ "loss": 0.9485,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.92,
432
+ "learning_rate": 1.9211732774502372e-05,
433
+ "loss": 0.9925,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.93,
438
+ "learning_rate": 1.9184217239468213e-05,
439
+ "loss": 0.9399,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.94,
444
+ "learning_rate": 1.915625007307925e-05,
445
+ "loss": 0.9579,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.96,
450
+ "learning_rate": 1.912783265061319e-05,
451
+ "loss": 0.9431,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.97,
456
+ "learning_rate": 1.9098966369488967e-05,
457
+ "loss": 0.9758,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.98,
462
+ "learning_rate": 1.9069652649198004e-05,
463
+ "loss": 0.9403,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 1.0,
468
+ "learning_rate": 1.9039892931234434e-05,
469
+ "loss": 0.9434,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 1.01,
474
+ "learning_rate": 1.900968867902419e-05,
475
+ "loss": 0.9028,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 1.02,
480
+ "learning_rate": 1.8979041377853068e-05,
481
+ "loss": 0.8579,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 1.03,
486
+ "learning_rate": 1.8947952534793663e-05,
487
+ "loss": 0.8575,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 1.05,
492
+ "learning_rate": 1.891642367863127e-05,
493
+ "loss": 0.8453,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 1.06,
498
+ "learning_rate": 1.8884456359788725e-05,
499
+ "loss": 0.8504,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 1.07,
504
+ "learning_rate": 1.8852052150250123e-05,
505
+ "loss": 0.8479,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 1.09,
510
+ "learning_rate": 1.881921264348355e-05,
511
+ "loss": 0.8473,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 1.1,
516
+ "learning_rate": 1.878593945436272e-05,
517
+ "loss": 0.8223,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 1.11,
522
+ "learning_rate": 1.8752234219087538e-05,
523
+ "loss": 0.8424,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 1.12,
528
+ "learning_rate": 1.871809859510368e-05,
529
+ "loss": 0.8525,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 1.14,
534
+ "learning_rate": 1.8683534261021058e-05,
535
+ "loss": 0.8561,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 1.15,
540
+ "learning_rate": 1.8648542916531283e-05,
541
+ "loss": 0.8301,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 1.16,
546
+ "learning_rate": 1.8613126282324092e-05,
547
+ "loss": 0.8174,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 1.18,
552
+ "learning_rate": 1.8577286100002723e-05,
553
+ "loss": 0.8228,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 1.19,
558
+ "learning_rate": 1.8541024131998277e-05,
559
+ "loss": 0.8189,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 1.2,
564
+ "learning_rate": 1.850434216148305e-05,
565
+ "loss": 0.804,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 1.21,
570
+ "learning_rate": 1.8467241992282842e-05,
571
+ "loss": 0.8368,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 1.23,
576
+ "learning_rate": 1.8429725448788267e-05,
577
+ "loss": 0.8353,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 1.24,
582
+ "learning_rate": 1.8391794375865025e-05,
583
+ "loss": 0.8153,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 1.25,
588
+ "learning_rate": 1.8353450638763178e-05,
589
+ "loss": 0.778,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 1.27,
594
+ "learning_rate": 1.8314696123025456e-05,
595
+ "loss": 0.8143,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 1.28,
600
+ "learning_rate": 1.827553273439449e-05,
601
+ "loss": 0.8126,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 1.29,
606
+ "learning_rate": 1.823596239871915e-05,
607
+ "loss": 0.7918,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 1.31,
612
+ "learning_rate": 1.819598706185979e-05,
613
+ "loss": 0.8084,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 1.32,
618
+ "learning_rate": 1.8155608689592604e-05,
619
+ "loss": 0.8166,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 1.33,
624
+ "learning_rate": 1.811482926751293e-05,
625
+ "loss": 0.8211,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 1.34,
630
+ "learning_rate": 1.8073650800937627e-05,
631
+ "loss": 0.83,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 1.36,
636
+ "learning_rate": 1.803207531480645e-05,
637
+ "loss": 0.8166,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 1.37,
642
+ "learning_rate": 1.7990104853582494e-05,
643
+ "loss": 0.8037,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 1.38,
648
+ "learning_rate": 1.7947741481151628e-05,
649
+ "loss": 0.7819,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 1.4,
654
+ "learning_rate": 1.7904987280721037e-05,
655
+ "loss": 0.781,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 1.41,
660
+ "learning_rate": 1.7861844354716757e-05,
661
+ "loss": 0.8338,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 1.42,
666
+ "learning_rate": 1.78183148246803e-05,
667
+ "loss": 0.8088,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 1.43,
672
+ "learning_rate": 1.777440083116432e-05,
673
+ "loss": 0.7566,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 1.45,
678
+ "learning_rate": 1.773010453362737e-05,
679
+ "loss": 0.786,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 1.46,
684
+ "learning_rate": 1.7685428110327683e-05,
685
+ "loss": 0.787,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 1.47,
690
+ "learning_rate": 1.7640373758216075e-05,
691
+ "loss": 0.7889,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 1.49,
696
+ "learning_rate": 1.7594943692827913e-05,
697
+ "loss": 0.7934,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 1.5,
702
+ "learning_rate": 1.754914014817416e-05,
703
+ "loss": 0.7853,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 1.51,
708
+ "learning_rate": 1.7502965376631515e-05,
709
+ "loss": 0.807,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 1.53,
714
+ "learning_rate": 1.7456421648831658e-05,
715
+ "loss": 0.7973,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 1.54,
720
+ "learning_rate": 1.7409511253549592e-05,
721
+ "loss": 0.8228,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 1.55,
726
+ "learning_rate": 1.7362236497591097e-05,
727
+ "loss": 0.7885,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 1.56,
732
+ "learning_rate": 1.731459970567928e-05,
733
+ "loss": 0.7657,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 1.58,
738
+ "learning_rate": 1.7266603220340273e-05,
739
+ "loss": 0.7701,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 1.59,
744
+ "learning_rate": 1.7218249401788033e-05,
745
+ "loss": 0.7784,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 1.6,
750
+ "learning_rate": 1.7169540627808276e-05,
751
+ "loss": 0.8019,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 1.62,
756
+ "learning_rate": 1.7120479293641558e-05,
757
+ "loss": 0.7428,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 1.63,
762
+ "learning_rate": 1.7071067811865477e-05,
763
+ "loss": 0.7482,
764
+ "step": 126
765
+ },
766
+ {
767
+ "epoch": 1.64,
768
+ "learning_rate": 1.7021308612276056e-05,
769
+ "loss": 0.7833,
770
+ "step": 127
771
+ },
772
+ {
773
+ "epoch": 1.65,
774
+ "learning_rate": 1.6971204141768235e-05,
775
+ "loss": 0.7865,
776
+ "step": 128
777
+ },
778
+ {
779
+ "epoch": 1.67,
780
+ "learning_rate": 1.6920756864215558e-05,
781
+ "loss": 0.7722,
782
+ "step": 129
783
+ },
784
+ {
785
+ "epoch": 1.68,
786
+ "learning_rate": 1.686996926034902e-05,
787
+ "loss": 0.7703,
788
+ "step": 130
789
+ },
790
+ {
791
+ "epoch": 1.69,
792
+ "learning_rate": 1.6818843827635052e-05,
793
+ "loss": 0.7667,
794
+ "step": 131
795
+ },
796
+ {
797
+ "epoch": 1.71,
798
+ "learning_rate": 1.6767383080152744e-05,
799
+ "loss": 0.7361,
800
+ "step": 132
801
+ },
802
+ {
803
+ "epoch": 1.72,
804
+ "learning_rate": 1.6715589548470187e-05,
805
+ "loss": 0.8037,
806
+ "step": 133
807
+ },
808
+ {
809
+ "epoch": 1.73,
810
+ "learning_rate": 1.6663465779520042e-05,
811
+ "loss": 0.7281,
812
+ "step": 134
813
+ },
814
+ {
815
+ "epoch": 1.74,
816
+ "learning_rate": 1.6611014336474303e-05,
817
+ "loss": 0.7402,
818
+ "step": 135
819
+ },
820
+ {
821
+ "epoch": 1.76,
822
+ "learning_rate": 1.6558237798618243e-05,
823
+ "loss": 0.7343,
824
+ "step": 136
825
+ },
826
+ {
827
+ "epoch": 1.77,
828
+ "learning_rate": 1.6505138761223586e-05,
829
+ "loss": 0.7379,
830
+ "step": 137
831
+ },
832
+ {
833
+ "epoch": 1.78,
834
+ "learning_rate": 1.645171983542088e-05,
835
+ "loss": 0.7296,
836
+ "step": 138
837
+ },
838
+ {
839
+ "epoch": 1.8,
840
+ "learning_rate": 1.6397983648071093e-05,
841
+ "loss": 0.7136,
842
+ "step": 139
843
+ },
844
+ {
845
+ "epoch": 1.81,
846
+ "learning_rate": 1.6343932841636455e-05,
847
+ "loss": 0.7394,
848
+ "step": 140
849
+ },
850
+ {
851
+ "epoch": 1.82,
852
+ "learning_rate": 1.6289570074050492e-05,
853
+ "loss": 0.7298,
854
+ "step": 141
855
+ },
856
+ {
857
+ "epoch": 1.84,
858
+ "learning_rate": 1.6234898018587336e-05,
859
+ "loss": 0.7253,
860
+ "step": 142
861
+ },
862
+ {
863
+ "epoch": 1.85,
864
+ "learning_rate": 1.617991936373027e-05,
865
+ "loss": 0.7967,
866
+ "step": 143
867
+ },
868
+ {
869
+ "epoch": 1.86,
870
+ "learning_rate": 1.6124636813039502e-05,
871
+ "loss": 0.6995,
872
+ "step": 144
873
+ },
874
+ {
875
+ "epoch": 1.87,
876
+ "learning_rate": 1.6069053085019258e-05,
877
+ "loss": 0.7193,
878
+ "step": 145
879
+ },
880
+ {
881
+ "epoch": 1.89,
882
+ "learning_rate": 1.601317091298406e-05,
883
+ "loss": 0.7227,
884
+ "step": 146
885
+ },
886
+ {
887
+ "epoch": 1.9,
888
+ "learning_rate": 1.5956993044924334e-05,
889
+ "loss": 0.7113,
890
+ "step": 147
891
+ },
892
+ {
893
+ "epoch": 1.91,
894
+ "learning_rate": 1.5900522243371283e-05,
895
+ "loss": 0.7434,
896
+ "step": 148
897
+ },
898
+ {
899
+ "epoch": 1.93,
900
+ "learning_rate": 1.5843761285261027e-05,
901
+ "loss": 0.7252,
902
+ "step": 149
903
+ },
904
+ {
905
+ "epoch": 1.94,
906
+ "learning_rate": 1.578671296179806e-05,
907
+ "loss": 0.7414,
908
+ "step": 150
909
+ },
910
+ {
911
+ "epoch": 1.95,
912
+ "learning_rate": 1.5729380078317982e-05,
913
+ "loss": 0.6879,
914
+ "step": 151
915
+ },
916
+ {
917
+ "epoch": 1.96,
918
+ "learning_rate": 1.5671765454149558e-05,
919
+ "loss": 0.7181,
920
+ "step": 152
921
+ },
922
+ {
923
+ "epoch": 1.98,
924
+ "learning_rate": 1.5613871922476082e-05,
925
+ "loss": 0.6852,
926
+ "step": 153
927
+ },
928
+ {
929
+ "epoch": 1.99,
930
+ "learning_rate": 1.5555702330196024e-05,
931
+ "loss": 0.7135,
932
+ "step": 154
933
+ },
934
+ {
935
+ "epoch": 2.0,
936
+ "learning_rate": 1.5497259537783084e-05,
937
+ "loss": 0.682,
938
+ "step": 155
939
+ },
940
+ {
941
+ "epoch": 2.02,
942
+ "learning_rate": 1.543854641914549e-05,
943
+ "loss": 0.4981,
944
+ "step": 156
945
+ },
946
+ {
947
+ "epoch": 2.03,
948
+ "learning_rate": 1.537956586148469e-05,
949
+ "loss": 0.4879,
950
+ "step": 157
951
+ },
952
+ {
953
+ "epoch": 2.04,
954
+ "learning_rate": 1.5320320765153367e-05,
955
+ "loss": 0.4878,
956
+ "step": 158
957
+ },
958
+ {
959
+ "epoch": 2.05,
960
+ "learning_rate": 1.5260814043512838e-05,
961
+ "loss": 0.4754,
962
+ "step": 159
963
+ },
964
+ {
965
+ "epoch": 2.07,
966
+ "learning_rate": 1.5201048622789747e-05,
967
+ "loss": 0.4727,
968
+ "step": 160
969
+ },
970
+ {
971
+ "epoch": 2.08,
972
+ "learning_rate": 1.5141027441932217e-05,
973
+ "loss": 0.4714,
974
+ "step": 161
975
+ },
976
+ {
977
+ "epoch": 2.09,
978
+ "learning_rate": 1.5080753452465296e-05,
979
+ "loss": 0.4644,
980
+ "step": 162
981
+ },
982
+ {
983
+ "epoch": 2.11,
984
+ "learning_rate": 1.502022961834582e-05,
985
+ "loss": 0.4727,
986
+ "step": 163
987
+ },
988
+ {
989
+ "epoch": 2.12,
990
+ "learning_rate": 1.4959458915816681e-05,
991
+ "loss": 0.4385,
992
+ "step": 164
993
+ },
994
+ {
995
+ "epoch": 2.13,
996
+ "learning_rate": 1.4898444333260436e-05,
997
+ "loss": 0.4349,
998
+ "step": 165
999
+ },
1000
+ {
1001
+ "epoch": 2.15,
1002
+ "learning_rate": 1.4837188871052399e-05,
1003
+ "loss": 0.4708,
1004
+ "step": 166
1005
+ },
1006
+ {
1007
+ "epoch": 2.16,
1008
+ "learning_rate": 1.4775695541413063e-05,
1009
+ "loss": 0.435,
1010
+ "step": 167
1011
+ },
1012
+ {
1013
+ "epoch": 2.17,
1014
+ "learning_rate": 1.4713967368259981e-05,
1015
+ "loss": 0.4391,
1016
+ "step": 168
1017
+ },
1018
+ {
1019
+ "epoch": 2.18,
1020
+ "learning_rate": 1.4652007387059077e-05,
1021
+ "loss": 0.4417,
1022
+ "step": 169
1023
+ },
1024
+ {
1025
+ "epoch": 2.2,
1026
+ "learning_rate": 1.4589818644675378e-05,
1027
+ "loss": 0.4331,
1028
+ "step": 170
1029
+ },
1030
+ {
1031
+ "epoch": 2.21,
1032
+ "learning_rate": 1.4527404199223173e-05,
1033
+ "loss": 0.4214,
1034
+ "step": 171
1035
+ },
1036
+ {
1037
+ "epoch": 2.22,
1038
+ "learning_rate": 1.446476711991563e-05,
1039
+ "loss": 0.4067,
1040
+ "step": 172
1041
+ },
1042
+ {
1043
+ "epoch": 2.24,
1044
+ "learning_rate": 1.4401910486913892e-05,
1045
+ "loss": 0.4371,
1046
+ "step": 173
1047
+ },
1048
+ {
1049
+ "epoch": 2.25,
1050
+ "learning_rate": 1.4338837391175582e-05,
1051
+ "loss": 0.4318,
1052
+ "step": 174
1053
+ },
1054
+ {
1055
+ "epoch": 2.26,
1056
+ "learning_rate": 1.4275550934302822e-05,
1057
+ "loss": 0.4215,
1058
+ "step": 175
1059
+ },
1060
+ {
1061
+ "epoch": 2.27,
1062
+ "learning_rate": 1.4212054228389712e-05,
1063
+ "loss": 0.4312,
1064
+ "step": 176
1065
+ },
1066
+ {
1067
+ "epoch": 2.29,
1068
+ "learning_rate": 1.4148350395869279e-05,
1069
+ "loss": 0.4097,
1070
+ "step": 177
1071
+ },
1072
+ {
1073
+ "epoch": 2.3,
1074
+ "learning_rate": 1.4084442569359964e-05,
1075
+ "loss": 0.4094,
1076
+ "step": 178
1077
+ },
1078
+ {
1079
+ "epoch": 2.31,
1080
+ "learning_rate": 1.4020333891511536e-05,
1081
+ "loss": 0.4075,
1082
+ "step": 179
1083
+ },
1084
+ {
1085
+ "epoch": 2.33,
1086
+ "learning_rate": 1.395602751485059e-05,
1087
+ "loss": 0.4258,
1088
+ "step": 180
1089
+ },
1090
+ {
1091
+ "epoch": 2.34,
1092
+ "learning_rate": 1.3891526601625492e-05,
1093
+ "loss": 0.3956,
1094
+ "step": 181
1095
+ },
1096
+ {
1097
+ "epoch": 2.35,
1098
+ "learning_rate": 1.3826834323650899e-05,
1099
+ "loss": 0.3987,
1100
+ "step": 182
1101
+ },
1102
+ {
1103
+ "epoch": 2.37,
1104
+ "learning_rate": 1.3761953862151773e-05,
1105
+ "loss": 0.3987,
1106
+ "step": 183
1107
+ },
1108
+ {
1109
+ "epoch": 2.38,
1110
+ "learning_rate": 1.3696888407606952e-05,
1111
+ "loss": 0.3704,
1112
+ "step": 184
1113
+ },
1114
+ {
1115
+ "epoch": 2.39,
1116
+ "learning_rate": 1.3631641159592253e-05,
1117
+ "loss": 0.4014,
1118
+ "step": 185
1119
+ },
1120
+ {
1121
+ "epoch": 2.4,
1122
+ "learning_rate": 1.3566215326623131e-05,
1123
+ "loss": 0.4135,
1124
+ "step": 186
1125
+ },
1126
+ {
1127
+ "epoch": 2.42,
1128
+ "learning_rate": 1.3500614125996924e-05,
1129
+ "loss": 0.3753,
1130
+ "step": 187
1131
+ },
1132
+ {
1133
+ "epoch": 2.43,
1134
+ "learning_rate": 1.3434840783634611e-05,
1135
+ "loss": 0.3808,
1136
+ "step": 188
1137
+ },
1138
+ {
1139
+ "epoch": 2.44,
1140
+ "learning_rate": 1.3368898533922202e-05,
1141
+ "loss": 0.3618,
1142
+ "step": 189
1143
+ },
1144
+ {
1145
+ "epoch": 2.46,
1146
+ "learning_rate": 1.3302790619551673e-05,
1147
+ "loss": 0.3765,
1148
+ "step": 190
1149
+ },
1150
+ {
1151
+ "epoch": 2.47,
1152
+ "learning_rate": 1.3236520291361516e-05,
1153
+ "loss": 0.3512,
1154
+ "step": 191
1155
+ },
1156
+ {
1157
+ "epoch": 2.48,
1158
+ "learning_rate": 1.3170090808176883e-05,
1159
+ "loss": 0.3367,
1160
+ "step": 192
1161
+ },
1162
+ {
1163
+ "epoch": 2.49,
1164
+ "learning_rate": 1.310350543664932e-05,
1165
+ "loss": 0.3799,
1166
+ "step": 193
1167
+ },
1168
+ {
1169
+ "epoch": 2.51,
1170
+ "learning_rate": 1.3036767451096148e-05,
1171
+ "loss": 0.3589,
1172
+ "step": 194
1173
+ },
1174
+ {
1175
+ "epoch": 2.52,
1176
+ "learning_rate": 1.2969880133339437e-05,
1177
+ "loss": 0.3658,
1178
+ "step": 195
1179
+ },
1180
+ {
1181
+ "epoch": 2.53,
1182
+ "learning_rate": 1.2902846772544625e-05,
1183
+ "loss": 0.3567,
1184
+ "step": 196
1185
+ },
1186
+ {
1187
+ "epoch": 2.55,
1188
+ "learning_rate": 1.2835670665058779e-05,
1189
+ "loss": 0.3312,
1190
+ "step": 197
1191
+ },
1192
+ {
1193
+ "epoch": 2.56,
1194
+ "learning_rate": 1.2768355114248493e-05,
1195
+ "loss": 0.3518,
1196
+ "step": 198
1197
+ },
1198
+ {
1199
+ "epoch": 2.57,
1200
+ "learning_rate": 1.2700903430337456e-05,
1201
+ "loss": 0.3588,
1202
+ "step": 199
1203
+ },
1204
+ {
1205
+ "epoch": 2.58,
1206
+ "learning_rate": 1.2633318930243647e-05,
1207
+ "loss": 0.3709,
1208
+ "step": 200
1209
+ },
1210
+ {
1211
+ "epoch": 2.6,
1212
+ "learning_rate": 1.2565604937416267e-05,
1213
+ "loss": 0.3446,
1214
+ "step": 201
1215
+ },
1216
+ {
1217
+ "epoch": 2.61,
1218
+ "learning_rate": 1.249776478167227e-05,
1219
+ "loss": 0.363,
1220
+ "step": 202
1221
+ },
1222
+ {
1223
+ "epoch": 2.62,
1224
+ "learning_rate": 1.242980179903264e-05,
1225
+ "loss": 0.3603,
1226
+ "step": 203
1227
+ },
1228
+ {
1229
+ "epoch": 2.64,
1230
+ "learning_rate": 1.2361719331558346e-05,
1231
+ "loss": 0.3517,
1232
+ "step": 204
1233
+ },
1234
+ {
1235
+ "epoch": 2.65,
1236
+ "learning_rate": 1.229352072718598e-05,
1237
+ "loss": 0.3329,
1238
+ "step": 205
1239
+ },
1240
+ {
1241
+ "epoch": 2.66,
1242
+ "learning_rate": 1.2225209339563144e-05,
1243
+ "loss": 0.3441,
1244
+ "step": 206
1245
+ },
1246
+ {
1247
+ "epoch": 2.68,
1248
+ "learning_rate": 1.2156788527883524e-05,
1249
+ "loss": 0.335,
1250
+ "step": 207
1251
+ },
1252
+ {
1253
+ "epoch": 2.69,
1254
+ "learning_rate": 1.20882616567217e-05,
1255
+ "loss": 0.3259,
1256
+ "step": 208
1257
+ },
1258
+ {
1259
+ "epoch": 2.7,
1260
+ "learning_rate": 1.2019632095867697e-05,
1261
+ "loss": 0.296,
1262
+ "step": 209
1263
+ },
1264
+ {
1265
+ "epoch": 2.71,
1266
+ "learning_rate": 1.1950903220161286e-05,
1267
+ "loss": 0.321,
1268
+ "step": 210
1269
+ },
1270
+ {
1271
+ "epoch": 2.73,
1272
+ "learning_rate": 1.1882078409326003e-05,
1273
+ "loss": 0.3059,
1274
+ "step": 211
1275
+ },
1276
+ {
1277
+ "epoch": 2.74,
1278
+ "learning_rate": 1.1813161047802986e-05,
1279
+ "loss": 0.2979,
1280
+ "step": 212
1281
+ },
1282
+ {
1283
+ "epoch": 2.75,
1284
+ "learning_rate": 1.174415452458451e-05,
1285
+ "loss": 0.281,
1286
+ "step": 213
1287
+ },
1288
+ {
1289
+ "epoch": 2.77,
1290
+ "learning_rate": 1.1675062233047365e-05,
1291
+ "loss": 0.3029,
1292
+ "step": 214
1293
+ },
1294
+ {
1295
+ "epoch": 2.78,
1296
+ "learning_rate": 1.1605887570785972e-05,
1297
+ "loss": 0.3045,
1298
+ "step": 215
1299
+ },
1300
+ {
1301
+ "epoch": 2.79,
1302
+ "learning_rate": 1.1536633939445302e-05,
1303
+ "loss": 0.2989,
1304
+ "step": 216
1305
+ },
1306
+ {
1307
+ "epoch": 2.8,
1308
+ "learning_rate": 1.1467304744553618e-05,
1309
+ "loss": 0.2804,
1310
+ "step": 217
1311
+ },
1312
+ {
1313
+ "epoch": 2.82,
1314
+ "learning_rate": 1.1397903395354996e-05,
1315
+ "loss": 0.2852,
1316
+ "step": 218
1317
+ },
1318
+ {
1319
+ "epoch": 2.83,
1320
+ "learning_rate": 1.132843330464168e-05,
1321
+ "loss": 0.248,
1322
+ "step": 219
1323
+ },
1324
+ {
1325
+ "epoch": 2.84,
1326
+ "learning_rate": 1.1258897888586256e-05,
1327
+ "loss": 0.2822,
1328
+ "step": 220
1329
+ },
1330
+ {
1331
+ "epoch": 2.86,
1332
+ "learning_rate": 1.118930056657367e-05,
1333
+ "loss": 0.2713,
1334
+ "step": 221
1335
+ },
1336
+ {
1337
+ "epoch": 2.87,
1338
+ "learning_rate": 1.1119644761033079e-05,
1339
+ "loss": 0.2879,
1340
+ "step": 222
1341
+ },
1342
+ {
1343
+ "epoch": 2.88,
1344
+ "learning_rate": 1.1049933897269547e-05,
1345
+ "loss": 0.257,
1346
+ "step": 223
1347
+ },
1348
+ {
1349
+ "epoch": 2.89,
1350
+ "learning_rate": 1.098017140329561e-05,
1351
+ "loss": 0.2643,
1352
+ "step": 224
1353
+ },
1354
+ {
1355
+ "epoch": 2.91,
1356
+ "learning_rate": 1.0910360709662701e-05,
1357
+ "loss": 0.2694,
1358
+ "step": 225
1359
+ },
1360
+ {
1361
+ "epoch": 2.92,
1362
+ "learning_rate": 1.0840505249292477e-05,
1363
+ "loss": 0.2558,
1364
+ "step": 226
1365
+ },
1366
+ {
1367
+ "epoch": 2.93,
1368
+ "learning_rate": 1.0770608457307965e-05,
1369
+ "loss": 0.2547,
1370
+ "step": 227
1371
+ },
1372
+ {
1373
+ "epoch": 2.95,
1374
+ "learning_rate": 1.0700673770864673e-05,
1375
+ "loss": 0.2287,
1376
+ "step": 228
1377
+ },
1378
+ {
1379
+ "epoch": 2.96,
1380
+ "learning_rate": 1.0630704628981561e-05,
1381
+ "loss": 0.2441,
1382
+ "step": 229
1383
+ },
1384
+ {
1385
+ "epoch": 2.97,
1386
+ "learning_rate": 1.0560704472371919e-05,
1387
+ "loss": 0.2165,
1388
+ "step": 230
1389
+ },
1390
+ {
1391
+ "epoch": 2.99,
1392
+ "learning_rate": 1.0490676743274181e-05,
1393
+ "loss": 0.2302,
1394
+ "step": 231
1395
+ },
1396
+ {
1397
+ "epoch": 3.0,
1398
+ "learning_rate": 1.0420624885282653e-05,
1399
+ "loss": 0.2407,
1400
+ "step": 232
1401
+ },
1402
+ {
1403
+ "epoch": 3.01,
1404
+ "learning_rate": 1.0350552343178164e-05,
1405
+ "loss": 0.1206,
1406
+ "step": 233
1407
+ },
1408
+ {
1409
+ "epoch": 3.02,
1410
+ "learning_rate": 1.028046256275869e-05,
1411
+ "loss": 0.0922,
1412
+ "step": 234
1413
+ },
1414
+ {
1415
+ "epoch": 3.04,
1416
+ "learning_rate": 1.0210358990669889e-05,
1417
+ "loss": 0.0915,
1418
+ "step": 235
1419
+ },
1420
+ {
1421
+ "epoch": 3.05,
1422
+ "learning_rate": 1.0140245074235624e-05,
1423
+ "loss": 0.0834,
1424
+ "step": 236
1425
+ },
1426
+ {
1427
+ "epoch": 3.06,
1428
+ "learning_rate": 1.0070124261288437e-05,
1429
+ "loss": 0.0781,
1430
+ "step": 237
1431
+ },
1432
+ {
1433
+ "epoch": 3.08,
1434
+ "learning_rate": 1e-05,
1435
+ "loss": 0.0863,
1436
+ "step": 238
1437
+ },
1438
+ {
1439
+ "epoch": 3.09,
1440
+ "learning_rate": 9.929875738711565e-06,
1441
+ "loss": 0.0917,
1442
+ "step": 239
1443
+ },
1444
+ {
1445
+ "epoch": 3.1,
1446
+ "learning_rate": 9.85975492576438e-06,
1447
+ "loss": 0.0788,
1448
+ "step": 240
1449
+ },
1450
+ {
1451
+ "epoch": 3.11,
1452
+ "learning_rate": 9.789641009330113e-06,
1453
+ "loss": 0.0799,
1454
+ "step": 241
1455
+ },
1456
+ {
1457
+ "epoch": 3.13,
1458
+ "learning_rate": 9.719537437241311e-06,
1459
+ "loss": 0.0847,
1460
+ "step": 242
1461
+ },
1462
+ {
1463
+ "epoch": 3.14,
1464
+ "learning_rate": 9.64944765682184e-06,
1465
+ "loss": 0.0869,
1466
+ "step": 243
1467
+ },
1468
+ {
1469
+ "epoch": 3.15,
1470
+ "learning_rate": 9.579375114717352e-06,
1471
+ "loss": 0.0804,
1472
+ "step": 244
1473
+ },
1474
+ {
1475
+ "epoch": 3.17,
1476
+ "learning_rate": 9.50932325672582e-06,
1477
+ "loss": 0.0854,
1478
+ "step": 245
1479
+ },
1480
+ {
1481
+ "epoch": 3.18,
1482
+ "learning_rate": 9.439295527628083e-06,
1483
+ "loss": 0.0715,
1484
+ "step": 246
1485
+ },
1486
+ {
1487
+ "epoch": 3.19,
1488
+ "learning_rate": 9.369295371018442e-06,
1489
+ "loss": 0.0814,
1490
+ "step": 247
1491
+ },
1492
+ {
1493
+ "epoch": 3.21,
1494
+ "learning_rate": 9.299326229135326e-06,
1495
+ "loss": 0.0745,
1496
+ "step": 248
1497
+ },
1498
+ {
1499
+ "epoch": 3.22,
1500
+ "learning_rate": 9.22939154269204e-06,
1501
+ "loss": 0.0758,
1502
+ "step": 249
1503
+ },
1504
+ {
1505
+ "epoch": 3.23,
1506
+ "learning_rate": 9.159494750707527e-06,
1507
+ "loss": 0.0762,
1508
+ "step": 250
1509
+ },
1510
+ {
1511
+ "epoch": 3.24,
1512
+ "learning_rate": 9.0896392903373e-06,
1513
+ "loss": 0.0713,
1514
+ "step": 251
1515
+ },
1516
+ {
1517
+ "epoch": 3.26,
1518
+ "learning_rate": 9.019828596704394e-06,
1519
+ "loss": 0.0831,
1520
+ "step": 252
1521
+ },
1522
+ {
1523
+ "epoch": 3.27,
1524
+ "learning_rate": 8.950066102730456e-06,
1525
+ "loss": 0.0747,
1526
+ "step": 253
1527
+ },
1528
+ {
1529
+ "epoch": 3.28,
1530
+ "learning_rate": 8.880355238966923e-06,
1531
+ "loss": 0.0968,
1532
+ "step": 254
1533
+ },
1534
+ {
1535
+ "epoch": 3.3,
1536
+ "learning_rate": 8.81069943342633e-06,
1537
+ "loss": 0.0591,
1538
+ "step": 255
1539
+ },
1540
+ {
1541
+ "epoch": 3.31,
1542
+ "learning_rate": 8.741102111413749e-06,
1543
+ "loss": 0.0755,
1544
+ "step": 256
1545
+ },
1546
+ {
1547
+ "epoch": 3.32,
1548
+ "learning_rate": 8.671566695358324e-06,
1549
+ "loss": 0.0697,
1550
+ "step": 257
1551
+ },
1552
+ {
1553
+ "epoch": 3.33,
1554
+ "learning_rate": 8.602096604645009e-06,
1555
+ "loss": 0.0691,
1556
+ "step": 258
1557
+ },
1558
+ {
1559
+ "epoch": 3.35,
1560
+ "learning_rate": 8.532695255446384e-06,
1561
+ "loss": 0.0739,
1562
+ "step": 259
1563
+ },
1564
+ {
1565
+ "epoch": 3.36,
1566
+ "learning_rate": 8.463366060554698e-06,
1567
+ "loss": 0.0676,
1568
+ "step": 260
1569
+ },
1570
+ {
1571
+ "epoch": 3.37,
1572
+ "learning_rate": 8.394112429214032e-06,
1573
+ "loss": 0.0683,
1574
+ "step": 261
1575
+ },
1576
+ {
1577
+ "epoch": 3.39,
1578
+ "learning_rate": 8.324937766952638e-06,
1579
+ "loss": 0.0696,
1580
+ "step": 262
1581
+ },
1582
+ {
1583
+ "epoch": 3.4,
1584
+ "learning_rate": 8.255845475415493e-06,
1585
+ "loss": 0.0665,
1586
+ "step": 263
1587
+ },
1588
+ {
1589
+ "epoch": 3.41,
1590
+ "learning_rate": 8.186838952197019e-06,
1591
+ "loss": 0.0722,
1592
+ "step": 264
1593
+ },
1594
+ {
1595
+ "epoch": 3.42,
1596
+ "learning_rate": 8.117921590674002e-06,
1597
+ "loss": 0.0699,
1598
+ "step": 265
1599
+ },
1600
+ {
1601
+ "epoch": 3.44,
1602
+ "learning_rate": 8.04909677983872e-06,
1603
+ "loss": 0.0661,
1604
+ "step": 266
1605
+ },
1606
+ {
1607
+ "epoch": 3.45,
1608
+ "learning_rate": 7.980367904132303e-06,
1609
+ "loss": 0.0688,
1610
+ "step": 267
1611
+ },
1612
+ {
1613
+ "epoch": 3.46,
1614
+ "learning_rate": 7.911738343278303e-06,
1615
+ "loss": 0.0634,
1616
+ "step": 268
1617
+ },
1618
+ {
1619
+ "epoch": 3.48,
1620
+ "learning_rate": 7.843211472116476e-06,
1621
+ "loss": 0.0631,
1622
+ "step": 269
1623
+ },
1624
+ {
1625
+ "epoch": 3.49,
1626
+ "learning_rate": 7.774790660436857e-06,
1627
+ "loss": 0.068,
1628
+ "step": 270
1629
+ },
1630
+ {
1631
+ "epoch": 3.5,
1632
+ "learning_rate": 7.706479272814024e-06,
1633
+ "loss": 0.0596,
1634
+ "step": 271
1635
+ },
1636
+ {
1637
+ "epoch": 3.52,
1638
+ "learning_rate": 7.63828066844166e-06,
1639
+ "loss": 0.0603,
1640
+ "step": 272
1641
+ },
1642
+ {
1643
+ "epoch": 3.53,
1644
+ "learning_rate": 7.570198200967363e-06,
1645
+ "loss": 0.0631,
1646
+ "step": 273
1647
+ },
1648
+ {
1649
+ "epoch": 3.54,
1650
+ "learning_rate": 7.50223521832773e-06,
1651
+ "loss": 0.0727,
1652
+ "step": 274
1653
+ },
1654
+ {
1655
+ "epoch": 3.55,
1656
+ "learning_rate": 7.434395062583735e-06,
1657
+ "loss": 0.0635,
1658
+ "step": 275
1659
+ },
1660
+ {
1661
+ "epoch": 3.57,
1662
+ "learning_rate": 7.366681069756352e-06,
1663
+ "loss": 0.0575,
1664
+ "step": 276
1665
+ },
1666
+ {
1667
+ "epoch": 3.58,
1668
+ "learning_rate": 7.299096569662549e-06,
1669
+ "loss": 0.0613,
1670
+ "step": 277
1671
+ },
1672
+ {
1673
+ "epoch": 3.59,
1674
+ "learning_rate": 7.2316448857515076e-06,
1675
+ "loss": 0.0593,
1676
+ "step": 278
1677
+ },
1678
+ {
1679
+ "epoch": 3.61,
1680
+ "learning_rate": 7.164329334941225e-06,
1681
+ "loss": 0.0557,
1682
+ "step": 279
1683
+ },
1684
+ {
1685
+ "epoch": 3.62,
1686
+ "learning_rate": 7.097153227455379e-06,
1687
+ "loss": 0.0572,
1688
+ "step": 280
1689
+ },
1690
+ {
1691
+ "epoch": 3.63,
1692
+ "learning_rate": 7.030119866660565e-06,
1693
+ "loss": 0.0551,
1694
+ "step": 281
1695
+ },
1696
+ {
1697
+ "epoch": 3.64,
1698
+ "learning_rate": 6.963232548903853e-06,
1699
+ "loss": 0.0548,
1700
+ "step": 282
1701
+ },
1702
+ {
1703
+ "epoch": 3.66,
1704
+ "learning_rate": 6.896494563350681e-06,
1705
+ "loss": 0.0565,
1706
+ "step": 283
1707
+ },
1708
+ {
1709
+ "epoch": 3.67,
1710
+ "learning_rate": 6.829909191823121e-06,
1711
+ "loss": 0.0519,
1712
+ "step": 284
1713
+ },
1714
+ {
1715
+ "epoch": 3.68,
1716
+ "learning_rate": 6.763479708638485e-06,
1717
+ "loss": 0.0522,
1718
+ "step": 285
1719
+ },
1720
+ {
1721
+ "epoch": 3.7,
1722
+ "learning_rate": 6.697209380448333e-06,
1723
+ "loss": 0.0622,
1724
+ "step": 286
1725
+ },
1726
+ {
1727
+ "epoch": 3.71,
1728
+ "learning_rate": 6.631101466077801e-06,
1729
+ "loss": 0.0516,
1730
+ "step": 287
1731
+ },
1732
+ {
1733
+ "epoch": 3.72,
1734
+ "learning_rate": 6.5651592163653885e-06,
1735
+ "loss": 0.0496,
1736
+ "step": 288
1737
+ },
1738
+ {
1739
+ "epoch": 3.74,
1740
+ "learning_rate": 6.499385874003077e-06,
1741
+ "loss": 0.051,
1742
+ "step": 289
1743
+ },
1744
+ {
1745
+ "epoch": 3.75,
1746
+ "learning_rate": 6.43378467337687e-06,
1747
+ "loss": 0.0483,
1748
+ "step": 290
1749
+ },
1750
+ {
1751
+ "epoch": 3.76,
1752
+ "learning_rate": 6.368358840407754e-06,
1753
+ "loss": 0.0395,
1754
+ "step": 291
1755
+ },
1756
+ {
1757
+ "epoch": 3.77,
1758
+ "learning_rate": 6.303111592393051e-06,
1759
+ "loss": 0.0453,
1760
+ "step": 292
1761
+ },
1762
+ {
1763
+ "epoch": 3.79,
1764
+ "learning_rate": 6.23804613784823e-06,
1765
+ "loss": 0.0423,
1766
+ "step": 293
1767
+ },
1768
+ {
1769
+ "epoch": 3.8,
1770
+ "learning_rate": 6.173165676349103e-06,
1771
+ "loss": 0.0416,
1772
+ "step": 294
1773
+ },
1774
+ {
1775
+ "epoch": 3.81,
1776
+ "learning_rate": 6.108473398374509e-06,
1777
+ "loss": 0.0402,
1778
+ "step": 295
1779
+ },
1780
+ {
1781
+ "epoch": 3.83,
1782
+ "learning_rate": 6.043972485149414e-06,
1783
+ "loss": 0.0418,
1784
+ "step": 296
1785
+ },
1786
+ {
1787
+ "epoch": 3.84,
1788
+ "learning_rate": 5.979666108488464e-06,
1789
+ "loss": 0.0432,
1790
+ "step": 297
1791
+ },
1792
+ {
1793
+ "epoch": 3.85,
1794
+ "learning_rate": 5.91555743064004e-06,
1795
+ "loss": 0.0354,
1796
+ "step": 298
1797
+ },
1798
+ {
1799
+ "epoch": 3.86,
1800
+ "learning_rate": 5.851649604130723e-06,
1801
+ "loss": 0.0353,
1802
+ "step": 299
1803
+ },
1804
+ {
1805
+ "epoch": 3.88,
1806
+ "learning_rate": 5.787945771610296e-06,
1807
+ "loss": 0.033,
1808
+ "step": 300
1809
+ },
1810
+ {
1811
+ "epoch": 3.89,
1812
+ "learning_rate": 5.724449065697182e-06,
1813
+ "loss": 0.0344,
1814
+ "step": 301
1815
+ },
1816
+ {
1817
+ "epoch": 3.9,
1818
+ "learning_rate": 5.66116260882442e-06,
1819
+ "loss": 0.0339,
1820
+ "step": 302
1821
+ },
1822
+ {
1823
+ "epoch": 3.92,
1824
+ "learning_rate": 5.598089513086108e-06,
1825
+ "loss": 0.034,
1826
+ "step": 303
1827
+ },
1828
+ {
1829
+ "epoch": 3.93,
1830
+ "learning_rate": 5.535232880084373e-06,
1831
+ "loss": 0.0348,
1832
+ "step": 304
1833
+ },
1834
+ {
1835
+ "epoch": 3.94,
1836
+ "learning_rate": 5.472595800776831e-06,
1837
+ "loss": 0.0345,
1838
+ "step": 305
1839
+ },
1840
+ {
1841
+ "epoch": 3.95,
1842
+ "learning_rate": 5.410181355324622e-06,
1843
+ "loss": 0.0312,
1844
+ "step": 306
1845
+ },
1846
+ {
1847
+ "epoch": 3.97,
1848
+ "learning_rate": 5.347992612940927e-06,
1849
+ "loss": 0.0336,
1850
+ "step": 307
1851
+ },
1852
+ {
1853
+ "epoch": 3.98,
1854
+ "learning_rate": 5.286032631740023e-06,
1855
+ "loss": 0.0369,
1856
+ "step": 308
1857
+ },
1858
+ {
1859
+ "epoch": 3.99,
1860
+ "learning_rate": 5.22430445858694e-06,
1861
+ "loss": 0.0285,
1862
+ "step": 309
1863
+ },
1864
+ {
1865
+ "epoch": 4.01,
1866
+ "learning_rate": 5.1628111289476025e-06,
1867
+ "loss": 0.0239,
1868
+ "step": 310
1869
+ },
1870
+ {
1871
+ "epoch": 4.02,
1872
+ "learning_rate": 5.101555666739563e-06,
1873
+ "loss": 0.0095,
1874
+ "step": 311
1875
+ },
1876
+ {
1877
+ "epoch": 4.03,
1878
+ "learning_rate": 5.040541084183326e-06,
1879
+ "loss": 0.0114,
1880
+ "step": 312
1881
+ },
1882
+ {
1883
+ "epoch": 4.05,
1884
+ "learning_rate": 4.979770381654181e-06,
1885
+ "loss": 0.0109,
1886
+ "step": 313
1887
+ },
1888
+ {
1889
+ "epoch": 4.06,
1890
+ "learning_rate": 4.919246547534709e-06,
1891
+ "loss": 0.0095,
1892
+ "step": 314
1893
+ },
1894
+ {
1895
+ "epoch": 4.07,
1896
+ "learning_rate": 4.858972558067784e-06,
1897
+ "loss": 0.0103,
1898
+ "step": 315
1899
+ },
1900
+ {
1901
+ "epoch": 4.08,
1902
+ "learning_rate": 4.798951377210253e-06,
1903
+ "loss": 0.0088,
1904
+ "step": 316
1905
+ },
1906
+ {
1907
+ "epoch": 4.1,
1908
+ "learning_rate": 4.739185956487169e-06,
1909
+ "loss": 0.0107,
1910
+ "step": 317
1911
+ },
1912
+ {
1913
+ "epoch": 4.11,
1914
+ "learning_rate": 4.679679234846636e-06,
1915
+ "loss": 0.0108,
1916
+ "step": 318
1917
+ },
1918
+ {
1919
+ "epoch": 4.12,
1920
+ "learning_rate": 4.6204341385153186e-06,
1921
+ "loss": 0.0098,
1922
+ "step": 319
1923
+ },
1924
+ {
1925
+ "epoch": 4.14,
1926
+ "learning_rate": 4.561453580854516e-06,
1927
+ "loss": 0.0121,
1928
+ "step": 320
1929
+ },
1930
+ {
1931
+ "epoch": 4.15,
1932
+ "learning_rate": 4.502740462216919e-06,
1933
+ "loss": 0.0124,
1934
+ "step": 321
1935
+ },
1936
+ {
1937
+ "epoch": 4.16,
1938
+ "learning_rate": 4.444297669803981e-06,
1939
+ "loss": 0.0089,
1940
+ "step": 322
1941
+ },
1942
+ {
1943
+ "epoch": 4.17,
1944
+ "learning_rate": 4.386128077523923e-06,
1945
+ "loss": 0.0119,
1946
+ "step": 323
1947
+ },
1948
+ {
1949
+ "epoch": 4.19,
1950
+ "learning_rate": 4.328234545850441e-06,
1951
+ "loss": 0.0124,
1952
+ "step": 324
1953
+ },
1954
+ {
1955
+ "epoch": 4.2,
1956
+ "learning_rate": 4.270619921682019e-06,
1957
+ "loss": 0.0098,
1958
+ "step": 325
1959
+ },
1960
+ {
1961
+ "epoch": 4.21,
1962
+ "learning_rate": 4.213287038201943e-06,
1963
+ "loss": 0.0106,
1964
+ "step": 326
1965
+ },
1966
+ {
1967
+ "epoch": 4.23,
1968
+ "learning_rate": 4.156238714738974e-06,
1969
+ "loss": 0.012,
1970
+ "step": 327
1971
+ },
1972
+ {
1973
+ "epoch": 4.24,
1974
+ "learning_rate": 4.09947775662872e-06,
1975
+ "loss": 0.0081,
1976
+ "step": 328
1977
+ },
1978
+ {
1979
+ "epoch": 4.25,
1980
+ "learning_rate": 4.043006955075667e-06,
1981
+ "loss": 0.0093,
1982
+ "step": 329
1983
+ },
1984
+ {
1985
+ "epoch": 4.26,
1986
+ "learning_rate": 3.986829087015941e-06,
1987
+ "loss": 0.0079,
1988
+ "step": 330
1989
+ },
1990
+ {
1991
+ "epoch": 4.28,
1992
+ "learning_rate": 3.930946914980744e-06,
1993
+ "loss": 0.0105,
1994
+ "step": 331
1995
+ },
1996
+ {
1997
+ "epoch": 4.29,
1998
+ "learning_rate": 3.875363186960499e-06,
1999
+ "loss": 0.0094,
2000
+ "step": 332
2001
+ },
2002
+ {
2003
+ "epoch": 4.3,
2004
+ "learning_rate": 3.820080636269737e-06,
2005
+ "loss": 0.0095,
2006
+ "step": 333
2007
+ },
2008
+ {
2009
+ "epoch": 4.32,
2010
+ "learning_rate": 3.7651019814126656e-06,
2011
+ "loss": 0.0105,
2012
+ "step": 334
2013
+ },
2014
+ {
2015
+ "epoch": 4.33,
2016
+ "learning_rate": 3.7104299259495113e-06,
2017
+ "loss": 0.0058,
2018
+ "step": 335
2019
+ },
2020
+ {
2021
+ "epoch": 4.34,
2022
+ "learning_rate": 3.6560671583635467e-06,
2023
+ "loss": 0.0071,
2024
+ "step": 336
2025
+ },
2026
+ {
2027
+ "epoch": 4.36,
2028
+ "learning_rate": 3.6020163519289077e-06,
2029
+ "loss": 0.009,
2030
+ "step": 337
2031
+ },
2032
+ {
2033
+ "epoch": 4.37,
2034
+ "learning_rate": 3.5482801645791266e-06,
2035
+ "loss": 0.0086,
2036
+ "step": 338
2037
+ },
2038
+ {
2039
+ "epoch": 4.38,
2040
+ "learning_rate": 3.494861238776418e-06,
2041
+ "loss": 0.0073,
2042
+ "step": 339
2043
+ },
2044
+ {
2045
+ "epoch": 4.39,
2046
+ "learning_rate": 3.4417622013817597e-06,
2047
+ "loss": 0.0073,
2048
+ "step": 340
2049
+ },
2050
+ {
2051
+ "epoch": 4.41,
2052
+ "learning_rate": 3.3889856635257024e-06,
2053
+ "loss": 0.0054,
2054
+ "step": 341
2055
+ },
2056
+ {
2057
+ "epoch": 4.42,
2058
+ "learning_rate": 3.3365342204799613e-06,
2059
+ "loss": 0.0061,
2060
+ "step": 342
2061
+ },
2062
+ {
2063
+ "epoch": 4.43,
2064
+ "learning_rate": 3.284410451529816e-06,
2065
+ "loss": 0.0055,
2066
+ "step": 343
2067
+ },
2068
+ {
2069
+ "epoch": 4.45,
2070
+ "learning_rate": 3.2326169198472555e-06,
2071
+ "loss": 0.0066,
2072
+ "step": 344
2073
+ },
2074
+ {
2075
+ "epoch": 4.46,
2076
+ "learning_rate": 3.1811561723649496e-06,
2077
+ "loss": 0.009,
2078
+ "step": 345
2079
+ },
2080
+ {
2081
+ "epoch": 4.47,
2082
+ "learning_rate": 3.1300307396509833e-06,
2083
+ "loss": 0.0077,
2084
+ "step": 346
2085
+ },
2086
+ {
2087
+ "epoch": 4.48,
2088
+ "learning_rate": 3.0792431357844444e-06,
2089
+ "loss": 0.0061,
2090
+ "step": 347
2091
+ },
2092
+ {
2093
+ "epoch": 4.5,
2094
+ "learning_rate": 3.028795858231768e-06,
2095
+ "loss": 0.0062,
2096
+ "step": 348
2097
+ },
2098
+ {
2099
+ "epoch": 4.51,
2100
+ "learning_rate": 2.9786913877239486e-06,
2101
+ "loss": 0.0058,
2102
+ "step": 349
2103
+ },
2104
+ {
2105
+ "epoch": 4.52,
2106
+ "learning_rate": 2.9289321881345257e-06,
2107
+ "loss": 0.0078,
2108
+ "step": 350
2109
+ },
2110
+ {
2111
+ "epoch": 4.54,
2112
+ "learning_rate": 2.879520706358446e-06,
2113
+ "loss": 0.0075,
2114
+ "step": 351
2115
+ },
2116
+ {
2117
+ "epoch": 4.55,
2118
+ "learning_rate": 2.8304593721917283e-06,
2119
+ "loss": 0.0058,
2120
+ "step": 352
2121
+ },
2122
+ {
2123
+ "epoch": 4.56,
2124
+ "learning_rate": 2.7817505982119708e-06,
2125
+ "loss": 0.0065,
2126
+ "step": 353
2127
+ },
2128
+ {
2129
+ "epoch": 4.58,
2130
+ "learning_rate": 2.7333967796597317e-06,
2131
+ "loss": 0.0058,
2132
+ "step": 354
2133
+ },
2134
+ {
2135
+ "epoch": 4.59,
2136
+ "learning_rate": 2.6854002943207245e-06,
2137
+ "loss": 0.0063,
2138
+ "step": 355
2139
+ },
2140
+ {
2141
+ "epoch": 4.6,
2142
+ "learning_rate": 2.637763502408909e-06,
2143
+ "loss": 0.0052,
2144
+ "step": 356
2145
+ },
2146
+ {
2147
+ "epoch": 4.61,
2148
+ "learning_rate": 2.5904887464504115e-06,
2149
+ "loss": 0.0068,
2150
+ "step": 357
2151
+ },
2152
+ {
2153
+ "epoch": 4.63,
2154
+ "learning_rate": 2.5435783511683444e-06,
2155
+ "loss": 0.0089,
2156
+ "step": 358
2157
+ },
2158
+ {
2159
+ "epoch": 4.64,
2160
+ "learning_rate": 2.4970346233684863e-06,
2161
+ "loss": 0.006,
2162
+ "step": 359
2163
+ },
2164
+ {
2165
+ "epoch": 4.65,
2166
+ "learning_rate": 2.450859851825842e-06,
2167
+ "loss": 0.0046,
2168
+ "step": 360
2169
+ },
2170
+ {
2171
+ "epoch": 4.67,
2172
+ "learning_rate": 2.4050563071720867e-06,
2173
+ "loss": 0.0055,
2174
+ "step": 361
2175
+ },
2176
+ {
2177
+ "epoch": 4.68,
2178
+ "learning_rate": 2.3596262417839256e-06,
2179
+ "loss": 0.0045,
2180
+ "step": 362
2181
+ },
2182
+ {
2183
+ "epoch": 4.69,
2184
+ "learning_rate": 2.3145718896723204e-06,
2185
+ "loss": 0.0053,
2186
+ "step": 363
2187
+ },
2188
+ {
2189
+ "epoch": 4.7,
2190
+ "learning_rate": 2.26989546637263e-06,
2191
+ "loss": 0.0056,
2192
+ "step": 364
2193
+ },
2194
+ {
2195
+ "epoch": 4.72,
2196
+ "learning_rate": 2.225599168835677e-06,
2197
+ "loss": 0.0043,
2198
+ "step": 365
2199
+ },
2200
+ {
2201
+ "epoch": 4.73,
2202
+ "learning_rate": 2.1816851753197023e-06,
2203
+ "loss": 0.0078,
2204
+ "step": 366
2205
+ },
2206
+ {
2207
+ "epoch": 4.74,
2208
+ "learning_rate": 2.138155645283244e-06,
2209
+ "loss": 0.0068,
2210
+ "step": 367
2211
+ },
2212
+ {
2213
+ "epoch": 4.76,
2214
+ "learning_rate": 2.095012719278966e-06,
2215
+ "loss": 0.0037,
2216
+ "step": 368
2217
+ },
2218
+ {
2219
+ "epoch": 4.77,
2220
+ "learning_rate": 2.0522585188483745e-06,
2221
+ "loss": 0.0038,
2222
+ "step": 369
2223
+ },
2224
+ {
2225
+ "epoch": 4.78,
2226
+ "learning_rate": 2.009895146417512e-06,
2227
+ "loss": 0.0044,
2228
+ "step": 370
2229
+ },
2230
+ {
2231
+ "epoch": 4.79,
2232
+ "learning_rate": 1.967924685193552e-06,
2233
+ "loss": 0.0059,
2234
+ "step": 371
2235
+ },
2236
+ {
2237
+ "epoch": 4.81,
2238
+ "learning_rate": 1.9263491990623763e-06,
2239
+ "loss": 0.005,
2240
+ "step": 372
2241
+ },
2242
+ {
2243
+ "epoch": 4.82,
2244
+ "learning_rate": 1.885170732487074e-06,
2245
+ "loss": 0.0041,
2246
+ "step": 373
2247
+ },
2248
+ {
2249
+ "epoch": 4.83,
2250
+ "learning_rate": 1.8443913104073984e-06,
2251
+ "loss": 0.004,
2252
+ "step": 374
2253
+ },
2254
+ {
2255
+ "epoch": 4.85,
2256
+ "learning_rate": 1.8040129381402137e-06,
2257
+ "loss": 0.0042,
2258
+ "step": 375
2259
+ },
2260
+ {
2261
+ "epoch": 4.86,
2262
+ "learning_rate": 1.7640376012808536e-06,
2263
+ "loss": 0.0036,
2264
+ "step": 376
2265
+ },
2266
+ {
2267
+ "epoch": 4.87,
2268
+ "learning_rate": 1.7244672656055105e-06,
2269
+ "loss": 0.0037,
2270
+ "step": 377
2271
+ },
2272
+ {
2273
+ "epoch": 4.89,
2274
+ "learning_rate": 1.6853038769745466e-06,
2275
+ "loss": 0.0043,
2276
+ "step": 378
2277
+ },
2278
+ {
2279
+ "epoch": 4.9,
2280
+ "learning_rate": 1.6465493612368233e-06,
2281
+ "loss": 0.0052,
2282
+ "step": 379
2283
+ },
2284
+ {
2285
+ "epoch": 4.91,
2286
+ "learning_rate": 1.6082056241349787e-06,
2287
+ "loss": 0.0037,
2288
+ "step": 380
2289
+ },
2290
+ {
2291
+ "epoch": 4.92,
2292
+ "learning_rate": 1.5702745512117323e-06,
2293
+ "loss": 0.0034,
2294
+ "step": 381
2295
+ },
2296
+ {
2297
+ "epoch": 4.94,
2298
+ "learning_rate": 1.5327580077171589e-06,
2299
+ "loss": 0.0044,
2300
+ "step": 382
2301
+ },
2302
+ {
2303
+ "epoch": 4.95,
2304
+ "learning_rate": 1.495657838516953e-06,
2305
+ "loss": 0.0029,
2306
+ "step": 383
2307
+ },
2308
+ {
2309
+ "epoch": 4.96,
2310
+ "learning_rate": 1.4589758680017263e-06,
2311
+ "loss": 0.0026,
2312
+ "step": 384
2313
+ },
2314
+ {
2315
+ "epoch": 4.98,
2316
+ "learning_rate": 1.4227138999972801e-06,
2317
+ "loss": 0.0036,
2318
+ "step": 385
2319
+ },
2320
+ {
2321
+ "epoch": 4.99,
2322
+ "learning_rate": 1.3868737176759105e-06,
2323
+ "loss": 0.0049,
2324
+ "step": 386
2325
+ },
2326
+ {
2327
+ "epoch": 5.0,
2328
+ "learning_rate": 1.3514570834687203e-06,
2329
+ "loss": 0.0031,
2330
+ "step": 387
2331
+ },
2332
+ {
2333
+ "epoch": 5.01,
2334
+ "learning_rate": 1.3164657389789459e-06,
2335
+ "loss": 0.0015,
2336
+ "step": 388
2337
+ },
2338
+ {
2339
+ "epoch": 5.03,
2340
+ "learning_rate": 1.281901404896323e-06,
2341
+ "loss": 0.0016,
2342
+ "step": 389
2343
+ },
2344
+ {
2345
+ "epoch": 5.04,
2346
+ "learning_rate": 1.2477657809124632e-06,
2347
+ "loss": 0.0023,
2348
+ "step": 390
2349
+ },
2350
+ {
2351
+ "epoch": 5.05,
2352
+ "learning_rate": 1.2140605456372856e-06,
2353
+ "loss": 0.0026,
2354
+ "step": 391
2355
+ },
2356
+ {
2357
+ "epoch": 5.07,
2358
+ "learning_rate": 1.1807873565164507e-06,
2359
+ "loss": 0.0018,
2360
+ "step": 392
2361
+ },
2362
+ {
2363
+ "epoch": 5.08,
2364
+ "learning_rate": 1.1479478497498796e-06,
2365
+ "loss": 0.0017,
2366
+ "step": 393
2367
+ },
2368
+ {
2369
+ "epoch": 5.09,
2370
+ "learning_rate": 1.1155436402112785e-06,
2371
+ "loss": 0.0021,
2372
+ "step": 394
2373
+ },
2374
+ {
2375
+ "epoch": 5.11,
2376
+ "learning_rate": 1.08357632136873e-06,
2377
+ "loss": 0.0014,
2378
+ "step": 395
2379
+ },
2380
+ {
2381
+ "epoch": 5.12,
2382
+ "learning_rate": 1.0520474652063395e-06,
2383
+ "loss": 0.0012,
2384
+ "step": 396
2385
+ },
2386
+ {
2387
+ "epoch": 5.13,
2388
+ "learning_rate": 1.0209586221469336e-06,
2389
+ "loss": 0.0019,
2390
+ "step": 397
2391
+ },
2392
+ {
2393
+ "epoch": 5.14,
2394
+ "learning_rate": 9.903113209758098e-07,
2395
+ "loss": 0.0014,
2396
+ "step": 398
2397
+ },
2398
+ {
2399
+ "epoch": 5.16,
2400
+ "learning_rate": 9.601070687655667e-07,
2401
+ "loss": 0.0024,
2402
+ "step": 399
2403
+ },
2404
+ {
2405
+ "epoch": 5.17,
2406
+ "learning_rate": 9.303473508019944e-07,
2407
+ "loss": 0.003,
2408
+ "step": 400
2409
+ },
2410
+ {
2411
+ "epoch": 5.18,
2412
+ "learning_rate": 9.010336305110345e-07,
2413
+ "loss": 0.0029,
2414
+ "step": 401
2415
+ },
2416
+ {
2417
+ "epoch": 5.2,
2418
+ "learning_rate": 8.721673493868111e-07,
2419
+ "loss": 0.0014,
2420
+ "step": 402
2421
+ },
2422
+ {
2423
+ "epoch": 5.21,
2424
+ "learning_rate": 8.437499269207538e-07,
2425
+ "loss": 0.0018,
2426
+ "step": 403
2427
+ },
2428
+ {
2429
+ "epoch": 5.22,
2430
+ "learning_rate": 8.157827605317892e-07,
2431
+ "loss": 0.0013,
2432
+ "step": 404
2433
+ },
2434
+ {
2435
+ "epoch": 5.23,
2436
+ "learning_rate": 7.882672254976298e-07,
2437
+ "loss": 0.0014,
2438
+ "step": 405
2439
+ },
2440
+ {
2441
+ "epoch": 5.25,
2442
+ "learning_rate": 7.612046748871327e-07,
2443
+ "loss": 0.0014,
2444
+ "step": 406
2445
+ },
2446
+ {
2447
+ "epoch": 5.26,
2448
+ "learning_rate": 7.345964394937788e-07,
2449
+ "loss": 0.002,
2450
+ "step": 407
2451
+ },
2452
+ {
2453
+ "epoch": 5.27,
2454
+ "learning_rate": 7.084438277702188e-07,
2455
+ "loss": 0.0021,
2456
+ "step": 408
2457
+ },
2458
+ {
2459
+ "epoch": 5.29,
2460
+ "learning_rate": 6.827481257639346e-07,
2461
+ "loss": 0.0014,
2462
+ "step": 409
2463
+ },
2464
+ {
2465
+ "epoch": 5.3,
2466
+ "learning_rate": 6.57510597054003e-07,
2467
+ "loss": 0.0012,
2468
+ "step": 410
2469
+ },
2470
+ {
2471
+ "epoch": 5.31,
2472
+ "learning_rate": 6.327324826889469e-07,
2473
+ "loss": 0.002,
2474
+ "step": 411
2475
+ },
2476
+ {
2477
+ "epoch": 5.32,
2478
+ "learning_rate": 6.084150011257239e-07,
2479
+ "loss": 0.0014,
2480
+ "step": 412
2481
+ },
2482
+ {
2483
+ "epoch": 5.34,
2484
+ "learning_rate": 5.845593481697931e-07,
2485
+ "loss": 0.0011,
2486
+ "step": 413
2487
+ },
2488
+ {
2489
+ "epoch": 5.35,
2490
+ "learning_rate": 5.611666969163243e-07,
2491
+ "loss": 0.0025,
2492
+ "step": 414
2493
+ },
2494
+ {
2495
+ "epoch": 5.36,
2496
+ "learning_rate": 5.382381976925044e-07,
2497
+ "loss": 0.0013,
2498
+ "step": 415
2499
+ },
2500
+ {
2501
+ "epoch": 5.38,
2502
+ "learning_rate": 5.157749780009735e-07,
2503
+ "loss": 0.0014,
2504
+ "step": 416
2505
+ },
2506
+ {
2507
+ "epoch": 5.39,
2508
+ "learning_rate": 4.937781424643728e-07,
2509
+ "loss": 0.0014,
2510
+ "step": 417
2511
+ },
2512
+ {
2513
+ "epoch": 5.4,
2514
+ "learning_rate": 4.7224877277103673e-07,
2515
+ "loss": 0.0012,
2516
+ "step": 418
2517
+ },
2518
+ {
2519
+ "epoch": 5.42,
2520
+ "learning_rate": 4.511879276217967e-07,
2521
+ "loss": 0.0014,
2522
+ "step": 419
2523
+ },
2524
+ {
2525
+ "epoch": 5.43,
2526
+ "learning_rate": 4.305966426779118e-07,
2527
+ "loss": 0.0016,
2528
+ "step": 420
2529
+ },
2530
+ {
2531
+ "epoch": 5.44,
2532
+ "learning_rate": 4.1047593051015245e-07,
2533
+ "loss": 0.0012,
2534
+ "step": 421
2535
+ },
2536
+ {
2537
+ "epoch": 5.45,
2538
+ "learning_rate": 3.908267805490051e-07,
2539
+ "loss": 0.0024,
2540
+ "step": 422
2541
+ },
2542
+ {
2543
+ "epoch": 5.47,
2544
+ "learning_rate": 3.7165015903600553e-07,
2545
+ "loss": 0.0012,
2546
+ "step": 423
2547
+ },
2548
+ {
2549
+ "epoch": 5.48,
2550
+ "learning_rate": 3.529470089762421e-07,
2551
+ "loss": 0.0014,
2552
+ "step": 424
2553
+ },
2554
+ {
2555
+ "epoch": 5.49,
2556
+ "learning_rate": 3.347182500919677e-07,
2557
+ "loss": 0.0014,
2558
+ "step": 425
2559
+ },
2560
+ {
2561
+ "epoch": 5.51,
2562
+ "learning_rate": 3.1696477877738664e-07,
2563
+ "loss": 0.0021,
2564
+ "step": 426
2565
+ },
2566
+ {
2567
+ "epoch": 5.52,
2568
+ "learning_rate": 2.996874680545603e-07,
2569
+ "loss": 0.002,
2570
+ "step": 427
2571
+ },
2572
+ {
2573
+ "epoch": 5.53,
2574
+ "learning_rate": 2.8288716753049007e-07,
2575
+ "loss": 0.0013,
2576
+ "step": 428
2577
+ },
2578
+ {
2579
+ "epoch": 5.54,
2580
+ "learning_rate": 2.665647033553309e-07,
2581
+ "loss": 0.0014,
2582
+ "step": 429
2583
+ },
2584
+ {
2585
+ "epoch": 5.56,
2586
+ "learning_rate": 2.507208781817638e-07,
2587
+ "loss": 0.0012,
2588
+ "step": 430
2589
+ },
2590
+ {
2591
+ "epoch": 5.57,
2592
+ "learning_rate": 2.3535647112553295e-07,
2593
+ "loss": 0.0018,
2594
+ "step": 431
2595
+ },
2596
+ {
2597
+ "epoch": 5.58,
2598
+ "learning_rate": 2.20472237727124e-07,
2599
+ "loss": 0.0014,
2600
+ "step": 432
2601
+ },
2602
+ {
2603
+ "epoch": 5.6,
2604
+ "learning_rate": 2.0606890991461737e-07,
2605
+ "loss": 0.0011,
2606
+ "step": 433
2607
+ },
2608
+ {
2609
+ "epoch": 5.61,
2610
+ "learning_rate": 1.921471959676957e-07,
2611
+ "loss": 0.0012,
2612
+ "step": 434
2613
+ },
2614
+ {
2615
+ "epoch": 5.62,
2616
+ "learning_rate": 1.787077804828097e-07,
2617
+ "loss": 0.0012,
2618
+ "step": 435
2619
+ },
2620
+ {
2621
+ "epoch": 5.63,
2622
+ "learning_rate": 1.657513243395159e-07,
2623
+ "loss": 0.0014,
2624
+ "step": 436
2625
+ },
2626
+ {
2627
+ "epoch": 5.65,
2628
+ "learning_rate": 1.5327846466797857e-07,
2629
+ "loss": 0.0013,
2630
+ "step": 437
2631
+ },
2632
+ {
2633
+ "epoch": 5.66,
2634
+ "learning_rate": 1.4128981481764115e-07,
2635
+ "loss": 0.0012,
2636
+ "step": 438
2637
+ },
2638
+ {
2639
+ "epoch": 5.67,
2640
+ "learning_rate": 1.2978596432705826e-07,
2641
+ "loss": 0.0013,
2642
+ "step": 439
2643
+ },
2644
+ {
2645
+ "epoch": 5.69,
2646
+ "learning_rate": 1.1876747889491225e-07,
2647
+ "loss": 0.0017,
2648
+ "step": 440
2649
+ },
2650
+ {
2651
+ "epoch": 5.7,
2652
+ "learning_rate": 1.0823490035218986e-07,
2653
+ "loss": 0.0014,
2654
+ "step": 441
2655
+ },
2656
+ {
2657
+ "epoch": 5.71,
2658
+ "learning_rate": 9.818874663554356e-08,
2659
+ "loss": 0.0021,
2660
+ "step": 442
2661
+ },
2662
+ {
2663
+ "epoch": 5.73,
2664
+ "learning_rate": 8.862951176181744e-08,
2665
+ "loss": 0.0011,
2666
+ "step": 443
2667
+ },
2668
+ {
2669
+ "epoch": 5.74,
2670
+ "learning_rate": 7.955766580375334e-08,
2671
+ "loss": 0.0013,
2672
+ "step": 444
2673
+ },
2674
+ {
2675
+ "epoch": 5.75,
2676
+ "learning_rate": 7.097365486688158e-08,
2677
+ "loss": 0.0014,
2678
+ "step": 445
2679
+ },
2680
+ {
2681
+ "epoch": 5.76,
2682
+ "learning_rate": 6.287790106757396e-08,
2683
+ "loss": 0.0012,
2684
+ "step": 446
2685
+ },
2686
+ {
2687
+ "epoch": 5.78,
2688
+ "learning_rate": 5.527080251229833e-08,
2689
+ "loss": 0.0013,
2690
+ "step": 447
2691
+ },
2692
+ {
2693
+ "epoch": 5.79,
2694
+ "learning_rate": 4.815273327803183e-08,
2695
+ "loss": 0.0013,
2696
+ "step": 448
2697
+ },
2698
+ {
2699
+ "epoch": 5.8,
2700
+ "learning_rate": 4.152404339386795e-08,
2701
+ "loss": 0.0023,
2702
+ "step": 449
2703
+ },
2704
+ {
2705
+ "epoch": 5.82,
2706
+ "learning_rate": 3.538505882380916e-08,
2707
+ "loss": 0.0014,
2708
+ "step": 450
2709
+ },
2710
+ {
2711
+ "epoch": 5.83,
2712
+ "learning_rate": 2.9736081450730813e-08,
2713
+ "loss": 0.0013,
2714
+ "step": 451
2715
+ },
2716
+ {
2717
+ "epoch": 5.84,
2718
+ "learning_rate": 2.4577389061539724e-08,
2719
+ "loss": 0.0015,
2720
+ "step": 452
2721
+ },
2722
+ {
2723
+ "epoch": 5.85,
2724
+ "learning_rate": 1.9909235333517296e-08,
2725
+ "loss": 0.0013,
2726
+ "step": 453
2727
+ },
2728
+ {
2729
+ "epoch": 5.87,
2730
+ "learning_rate": 1.5731849821833955e-08,
2731
+ "loss": 0.0012,
2732
+ "step": 454
2733
+ },
2734
+ {
2735
+ "epoch": 5.88,
2736
+ "learning_rate": 1.2045437948275952e-08,
2737
+ "loss": 0.0012,
2738
+ "step": 455
2739
+ },
2740
+ {
2741
+ "epoch": 5.89,
2742
+ "learning_rate": 8.850180991131219e-09,
2743
+ "loss": 0.0013,
2744
+ "step": 456
2745
+ },
2746
+ {
2747
+ "epoch": 5.91,
2748
+ "learning_rate": 6.146236076279843e-09,
2749
+ "loss": 0.0013,
2750
+ "step": 457
2751
+ },
2752
+ {
2753
+ "epoch": 5.92,
2754
+ "learning_rate": 3.933736169471347e-09,
2755
+ "loss": 0.0019,
2756
+ "step": 458
2757
+ },
2758
+ {
2759
+ "epoch": 5.93,
2760
+ "learning_rate": 2.2127900697777038e-09,
2761
+ "loss": 0.0012,
2762
+ "step": 459
2763
+ },
2764
+ {
2765
+ "epoch": 5.95,
2766
+ "learning_rate": 9.83482404249836e-10,
2767
+ "loss": 0.0011,
2768
+ "step": 460
2769
+ },
2770
+ {
2771
+ "epoch": 5.96,
2772
+ "learning_rate": 2.45873623754278e-10,
2773
+ "loss": 0.0014,
2774
+ "step": 461
2775
+ },
2776
+ {
2777
+ "epoch": 5.97,
2778
+ "learning_rate": 0.0,
2779
+ "loss": 0.0012,
2780
+ "step": 462
2781
+ },
2782
+ {
2783
+ "epoch": 5.97,
2784
+ "step": 462,
2785
+ "total_flos": 1.223725601702019e+18,
2786
+ "train_loss": 0.3808029658807184,
2787
+ "train_runtime": 10388.2603,
2788
+ "train_samples_per_second": 11.435,
2789
+ "train_steps_per_second": 0.044
2790
+ }
2791
+ ],
2792
+ "max_steps": 462,
2793
+ "num_train_epochs": 6,
2794
+ "total_flos": 1.223725601702019e+18,
2795
+ "trial_name": null,
2796
+ "trial_params": null
2797
+ }
layout_planner_m1/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43e7d0290e998eeed248ddf3776fd5ab72c8137d4cfaaba831ad08a833afbd4a
3
+ size 3707