JingyaHuang
commited on
Commit
·
b05d834
1
Parent(s):
57c38d0
update model
Browse files- config.json +25 -0
- create_model.py +10 -0
- modeling_bert.py +1894 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tf_model.h5 +3 -0
- tokenizer.json +1274 -0
- tokenizer_config.json +16 -0
- vocab.txt +1124 -0
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "temp/dummy/bert/BertModel",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 32,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 37,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 4,
|
17 |
+
"num_hidden_layers": 5,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.25.0.dev0",
|
22 |
+
"type_vocab_size": 16,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 1124
|
25 |
+
}
|
create_model.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from transformers import AutoConfig
|
2 |
+
|
3 |
+
# from modeling.modeling_bert import BertCustomLMHeadModel
|
4 |
+
|
5 |
+
# cfg = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
6 |
+
|
7 |
+
# BertCustomLMHeadModel.register_for_auto_class("AutoModelForSequenceClassification")
|
8 |
+
|
9 |
+
# model = BertCustomLMHeadModel(cfg)
|
10 |
+
# model.save_pretrained("/home/Jingya/hf_internship/tiny-testing-gpt2-remote-code")
|
modeling_bert.py
ADDED
@@ -0,0 +1,1894 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch BERT model."""
|
17 |
+
|
18 |
+
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
import warnings
|
22 |
+
from dataclasses import dataclass
|
23 |
+
from typing import List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from ...activations import ACT2FN
|
31 |
+
from ...modeling_outputs import (
|
32 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
33 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
34 |
+
CausalLMOutputWithCrossAttentions,
|
35 |
+
MaskedLMOutput,
|
36 |
+
MultipleChoiceModelOutput,
|
37 |
+
NextSentencePredictorOutput,
|
38 |
+
QuestionAnsweringModelOutput,
|
39 |
+
SequenceClassifierOutput,
|
40 |
+
TokenClassifierOutput,
|
41 |
+
)
|
42 |
+
from ...modeling_utils import PreTrainedModel
|
43 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
44 |
+
from ...utils import (
|
45 |
+
ModelOutput,
|
46 |
+
add_code_sample_docstrings,
|
47 |
+
add_start_docstrings,
|
48 |
+
add_start_docstrings_to_model_forward,
|
49 |
+
logging,
|
50 |
+
replace_return_docstrings,
|
51 |
+
)
|
52 |
+
from .configuration_bert import BertConfig
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
_CHECKPOINT_FOR_DOC = "bert-base-uncased"
|
58 |
+
_CONFIG_FOR_DOC = "BertConfig"
|
59 |
+
|
60 |
+
# TokenClassification docstring
|
61 |
+
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
62 |
+
_TOKEN_CLASS_EXPECTED_OUTPUT = (
|
63 |
+
"['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
|
64 |
+
)
|
65 |
+
_TOKEN_CLASS_EXPECTED_LOSS = 0.01
|
66 |
+
|
67 |
+
# QuestionAnswering docstring
|
68 |
+
_CHECKPOINT_FOR_QA = "deepset/bert-base-cased-squad2"
|
69 |
+
_QA_EXPECTED_OUTPUT = "'a nice puppet'"
|
70 |
+
_QA_EXPECTED_LOSS = 7.41
|
71 |
+
_QA_TARGET_START_INDEX = 14
|
72 |
+
_QA_TARGET_END_INDEX = 15
|
73 |
+
|
74 |
+
# SequenceClassification docstring
|
75 |
+
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "textattack/bert-base-uncased-yelp-polarity"
|
76 |
+
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
|
77 |
+
_SEQ_CLASS_EXPECTED_LOSS = 0.01
|
78 |
+
|
79 |
+
|
80 |
+
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
81 |
+
"bert-base-uncased",
|
82 |
+
"bert-large-uncased",
|
83 |
+
"bert-base-cased",
|
84 |
+
"bert-large-cased",
|
85 |
+
"bert-base-multilingual-uncased",
|
86 |
+
"bert-base-multilingual-cased",
|
87 |
+
"bert-base-chinese",
|
88 |
+
"bert-base-german-cased",
|
89 |
+
"bert-large-uncased-whole-word-masking",
|
90 |
+
"bert-large-cased-whole-word-masking",
|
91 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad",
|
92 |
+
"bert-large-cased-whole-word-masking-finetuned-squad",
|
93 |
+
"bert-base-cased-finetuned-mrpc",
|
94 |
+
"bert-base-german-dbmdz-cased",
|
95 |
+
"bert-base-german-dbmdz-uncased",
|
96 |
+
"cl-tohoku/bert-base-japanese",
|
97 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking",
|
98 |
+
"cl-tohoku/bert-base-japanese-char",
|
99 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
|
100 |
+
"TurkuNLP/bert-base-finnish-cased-v1",
|
101 |
+
"TurkuNLP/bert-base-finnish-uncased-v1",
|
102 |
+
"wietsedv/bert-base-dutch-cased",
|
103 |
+
# See all BERT models at https://huggingface.co/models?filter=bert
|
104 |
+
]
|
105 |
+
|
106 |
+
|
107 |
+
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
|
108 |
+
"""Load tf checkpoints in a pytorch model."""
|
109 |
+
try:
|
110 |
+
import re
|
111 |
+
|
112 |
+
import numpy as np
|
113 |
+
import tensorflow as tf
|
114 |
+
except ImportError:
|
115 |
+
logger.error(
|
116 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
117 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
118 |
+
)
|
119 |
+
raise
|
120 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
121 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
122 |
+
# Load weights from TF model
|
123 |
+
init_vars = tf.train.list_variables(tf_path)
|
124 |
+
names = []
|
125 |
+
arrays = []
|
126 |
+
for name, shape in init_vars:
|
127 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
128 |
+
array = tf.train.load_variable(tf_path, name)
|
129 |
+
names.append(name)
|
130 |
+
arrays.append(array)
|
131 |
+
|
132 |
+
for name, array in zip(names, arrays):
|
133 |
+
name = name.split("/")
|
134 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
135 |
+
# which are not required for using pretrained model
|
136 |
+
if any(
|
137 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
138 |
+
for n in name
|
139 |
+
):
|
140 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
141 |
+
continue
|
142 |
+
pointer = model
|
143 |
+
for m_name in name:
|
144 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
145 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
146 |
+
else:
|
147 |
+
scope_names = [m_name]
|
148 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
149 |
+
pointer = getattr(pointer, "weight")
|
150 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
151 |
+
pointer = getattr(pointer, "bias")
|
152 |
+
elif scope_names[0] == "output_weights":
|
153 |
+
pointer = getattr(pointer, "weight")
|
154 |
+
elif scope_names[0] == "squad":
|
155 |
+
pointer = getattr(pointer, "classifier")
|
156 |
+
else:
|
157 |
+
try:
|
158 |
+
pointer = getattr(pointer, scope_names[0])
|
159 |
+
except AttributeError:
|
160 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
161 |
+
continue
|
162 |
+
if len(scope_names) >= 2:
|
163 |
+
num = int(scope_names[1])
|
164 |
+
pointer = pointer[num]
|
165 |
+
if m_name[-11:] == "_embeddings":
|
166 |
+
pointer = getattr(pointer, "weight")
|
167 |
+
elif m_name == "kernel":
|
168 |
+
array = np.transpose(array)
|
169 |
+
try:
|
170 |
+
if pointer.shape != array.shape:
|
171 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
172 |
+
except AssertionError as e:
|
173 |
+
e.args += (pointer.shape, array.shape)
|
174 |
+
raise
|
175 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
176 |
+
pointer.data = torch.from_numpy(array)
|
177 |
+
return model
|
178 |
+
|
179 |
+
|
180 |
+
class BertEmbeddings(nn.Module):
|
181 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
182 |
+
|
183 |
+
def __init__(self, config):
|
184 |
+
super().__init__()
|
185 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
186 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
187 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
188 |
+
|
189 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
190 |
+
# any TensorFlow checkpoint file
|
191 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
192 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
193 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
194 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
195 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
196 |
+
self.register_buffer(
|
197 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
198 |
+
)
|
199 |
+
|
200 |
+
def forward(
|
201 |
+
self,
|
202 |
+
input_ids: Optional[torch.LongTensor] = None,
|
203 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
204 |
+
position_ids: Optional[torch.LongTensor] = None,
|
205 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
206 |
+
past_key_values_length: int = 0,
|
207 |
+
) -> torch.Tensor:
|
208 |
+
if input_ids is not None:
|
209 |
+
input_shape = input_ids.size()
|
210 |
+
else:
|
211 |
+
input_shape = inputs_embeds.size()[:-1]
|
212 |
+
|
213 |
+
seq_length = input_shape[1]
|
214 |
+
|
215 |
+
if position_ids is None:
|
216 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
217 |
+
|
218 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
219 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
220 |
+
# issue #5664
|
221 |
+
if token_type_ids is None:
|
222 |
+
if hasattr(self, "token_type_ids"):
|
223 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
224 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
225 |
+
token_type_ids = buffered_token_type_ids_expanded
|
226 |
+
else:
|
227 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
228 |
+
|
229 |
+
if inputs_embeds is None:
|
230 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
231 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
232 |
+
|
233 |
+
embeddings = inputs_embeds + token_type_embeddings
|
234 |
+
if self.position_embedding_type == "absolute":
|
235 |
+
position_embeddings = self.position_embeddings(position_ids)
|
236 |
+
embeddings += position_embeddings
|
237 |
+
embeddings = self.LayerNorm(embeddings)
|
238 |
+
embeddings = self.dropout(embeddings)
|
239 |
+
return embeddings
|
240 |
+
|
241 |
+
|
242 |
+
class BertSelfAttention(nn.Module):
|
243 |
+
def __init__(self, config, position_embedding_type=None):
|
244 |
+
super().__init__()
|
245 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
246 |
+
raise ValueError(
|
247 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
248 |
+
f"heads ({config.num_attention_heads})"
|
249 |
+
)
|
250 |
+
|
251 |
+
self.num_attention_heads = config.num_attention_heads
|
252 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
253 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
254 |
+
|
255 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
256 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
257 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
258 |
+
|
259 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
260 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
261 |
+
config, "position_embedding_type", "absolute"
|
262 |
+
)
|
263 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
264 |
+
self.max_position_embeddings = config.max_position_embeddings
|
265 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
266 |
+
|
267 |
+
self.is_decoder = config.is_decoder
|
268 |
+
|
269 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
270 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
271 |
+
x = x.view(new_x_shape)
|
272 |
+
return x.permute(0, 2, 1, 3)
|
273 |
+
|
274 |
+
def forward(
|
275 |
+
self,
|
276 |
+
hidden_states: torch.Tensor,
|
277 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
278 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
279 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
280 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
281 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
282 |
+
output_attentions: Optional[bool] = False,
|
283 |
+
) -> Tuple[torch.Tensor]:
|
284 |
+
mixed_query_layer = self.query(hidden_states)
|
285 |
+
|
286 |
+
# If this is instantiated as a cross-attention module, the keys
|
287 |
+
# and values come from an encoder; the attention mask needs to be
|
288 |
+
# such that the encoder's padding tokens are not attended to.
|
289 |
+
is_cross_attention = encoder_hidden_states is not None
|
290 |
+
|
291 |
+
if is_cross_attention and past_key_value is not None:
|
292 |
+
# reuse k,v, cross_attentions
|
293 |
+
key_layer = past_key_value[0]
|
294 |
+
value_layer = past_key_value[1]
|
295 |
+
attention_mask = encoder_attention_mask
|
296 |
+
elif is_cross_attention:
|
297 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
298 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
299 |
+
attention_mask = encoder_attention_mask
|
300 |
+
elif past_key_value is not None:
|
301 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
302 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
303 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
304 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
305 |
+
else:
|
306 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
307 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
308 |
+
|
309 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
310 |
+
|
311 |
+
use_cache = past_key_value is not None
|
312 |
+
if self.is_decoder:
|
313 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
314 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
315 |
+
# key/value_states (first "if" case)
|
316 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
317 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
318 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
319 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
320 |
+
past_key_value = (key_layer, value_layer)
|
321 |
+
|
322 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
323 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
324 |
+
|
325 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
326 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
327 |
+
if use_cache:
|
328 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
329 |
+
-1, 1
|
330 |
+
)
|
331 |
+
else:
|
332 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
333 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
334 |
+
distance = position_ids_l - position_ids_r
|
335 |
+
|
336 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
337 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
338 |
+
|
339 |
+
if self.position_embedding_type == "relative_key":
|
340 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
341 |
+
attention_scores = attention_scores + relative_position_scores
|
342 |
+
elif self.position_embedding_type == "relative_key_query":
|
343 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
344 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
345 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
346 |
+
|
347 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
348 |
+
if attention_mask is not None:
|
349 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
350 |
+
attention_scores = attention_scores + attention_mask
|
351 |
+
|
352 |
+
# Normalize the attention scores to probabilities.
|
353 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
354 |
+
|
355 |
+
# This is actually dropping out entire tokens to attend to, which might
|
356 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
357 |
+
attention_probs = self.dropout(attention_probs)
|
358 |
+
|
359 |
+
# Mask heads if we want to
|
360 |
+
if head_mask is not None:
|
361 |
+
attention_probs = attention_probs * head_mask
|
362 |
+
|
363 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
364 |
+
|
365 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
366 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
367 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
368 |
+
|
369 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
370 |
+
|
371 |
+
if self.is_decoder:
|
372 |
+
outputs = outputs + (past_key_value,)
|
373 |
+
return outputs
|
374 |
+
|
375 |
+
|
376 |
+
class BertSelfOutput(nn.Module):
|
377 |
+
def __init__(self, config):
|
378 |
+
super().__init__()
|
379 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
380 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
381 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
382 |
+
|
383 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
384 |
+
hidden_states = self.dense(hidden_states)
|
385 |
+
hidden_states = self.dropout(hidden_states)
|
386 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
387 |
+
return hidden_states
|
388 |
+
|
389 |
+
|
390 |
+
class BertAttention(nn.Module):
|
391 |
+
def __init__(self, config, position_embedding_type=None):
|
392 |
+
super().__init__()
|
393 |
+
self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type)
|
394 |
+
self.output = BertSelfOutput(config)
|
395 |
+
self.pruned_heads = set()
|
396 |
+
|
397 |
+
def prune_heads(self, heads):
|
398 |
+
if len(heads) == 0:
|
399 |
+
return
|
400 |
+
heads, index = find_pruneable_heads_and_indices(
|
401 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
402 |
+
)
|
403 |
+
|
404 |
+
# Prune linear layers
|
405 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
406 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
407 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
408 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
409 |
+
|
410 |
+
# Update hyper params and store pruned heads
|
411 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
412 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
413 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
414 |
+
|
415 |
+
def forward(
|
416 |
+
self,
|
417 |
+
hidden_states: torch.Tensor,
|
418 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
419 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
420 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
421 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
422 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
423 |
+
output_attentions: Optional[bool] = False,
|
424 |
+
) -> Tuple[torch.Tensor]:
|
425 |
+
self_outputs = self.self(
|
426 |
+
hidden_states,
|
427 |
+
attention_mask,
|
428 |
+
head_mask,
|
429 |
+
encoder_hidden_states,
|
430 |
+
encoder_attention_mask,
|
431 |
+
past_key_value,
|
432 |
+
output_attentions,
|
433 |
+
)
|
434 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
435 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
436 |
+
return outputs
|
437 |
+
|
438 |
+
|
439 |
+
class BertIntermediate(nn.Module):
|
440 |
+
def __init__(self, config):
|
441 |
+
super().__init__()
|
442 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
443 |
+
if isinstance(config.hidden_act, str):
|
444 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
445 |
+
else:
|
446 |
+
self.intermediate_act_fn = config.hidden_act
|
447 |
+
|
448 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
449 |
+
hidden_states = self.dense(hidden_states)
|
450 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
451 |
+
return hidden_states
|
452 |
+
|
453 |
+
|
454 |
+
class BertOutput(nn.Module):
|
455 |
+
def __init__(self, config):
|
456 |
+
super().__init__()
|
457 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
458 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
459 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
460 |
+
|
461 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
462 |
+
hidden_states = self.dense(hidden_states)
|
463 |
+
hidden_states = self.dropout(hidden_states)
|
464 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
465 |
+
return hidden_states
|
466 |
+
|
467 |
+
|
468 |
+
class BertLayer(nn.Module):
|
469 |
+
def __init__(self, config):
|
470 |
+
super().__init__()
|
471 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
472 |
+
self.seq_len_dim = 1
|
473 |
+
self.attention = BertAttention(config)
|
474 |
+
self.is_decoder = config.is_decoder
|
475 |
+
self.add_cross_attention = config.add_cross_attention
|
476 |
+
if self.add_cross_attention:
|
477 |
+
if not self.is_decoder:
|
478 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
479 |
+
self.crossattention = BertAttention(config, position_embedding_type="absolute")
|
480 |
+
self.intermediate = BertIntermediate(config)
|
481 |
+
self.output = BertOutput(config)
|
482 |
+
|
483 |
+
def forward(
|
484 |
+
self,
|
485 |
+
hidden_states: torch.Tensor,
|
486 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
487 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
488 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
489 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
490 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
491 |
+
output_attentions: Optional[bool] = False,
|
492 |
+
) -> Tuple[torch.Tensor]:
|
493 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
494 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
495 |
+
self_attention_outputs = self.attention(
|
496 |
+
hidden_states,
|
497 |
+
attention_mask,
|
498 |
+
head_mask,
|
499 |
+
output_attentions=output_attentions,
|
500 |
+
past_key_value=self_attn_past_key_value,
|
501 |
+
)
|
502 |
+
attention_output = self_attention_outputs[0]
|
503 |
+
|
504 |
+
# if decoder, the last output is tuple of self-attn cache
|
505 |
+
if self.is_decoder:
|
506 |
+
outputs = self_attention_outputs[1:-1]
|
507 |
+
present_key_value = self_attention_outputs[-1]
|
508 |
+
else:
|
509 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
510 |
+
|
511 |
+
cross_attn_present_key_value = None
|
512 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
513 |
+
if not hasattr(self, "crossattention"):
|
514 |
+
raise ValueError(
|
515 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
516 |
+
" by setting `config.add_cross_attention=True`"
|
517 |
+
)
|
518 |
+
|
519 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
520 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
521 |
+
cross_attention_outputs = self.crossattention(
|
522 |
+
attention_output,
|
523 |
+
attention_mask,
|
524 |
+
head_mask,
|
525 |
+
encoder_hidden_states,
|
526 |
+
encoder_attention_mask,
|
527 |
+
cross_attn_past_key_value,
|
528 |
+
output_attentions,
|
529 |
+
)
|
530 |
+
attention_output = cross_attention_outputs[0]
|
531 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
532 |
+
|
533 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
534 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
535 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
536 |
+
|
537 |
+
layer_output = apply_chunking_to_forward(
|
538 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
539 |
+
)
|
540 |
+
outputs = (layer_output,) + outputs
|
541 |
+
|
542 |
+
# if decoder, return the attn key/values as the last output
|
543 |
+
if self.is_decoder:
|
544 |
+
outputs = outputs + (present_key_value,)
|
545 |
+
|
546 |
+
return outputs
|
547 |
+
|
548 |
+
def feed_forward_chunk(self, attention_output):
|
549 |
+
intermediate_output = self.intermediate(attention_output)
|
550 |
+
layer_output = self.output(intermediate_output, attention_output)
|
551 |
+
return layer_output
|
552 |
+
|
553 |
+
|
554 |
+
class BertEncoder(nn.Module):
|
555 |
+
def __init__(self, config):
|
556 |
+
super().__init__()
|
557 |
+
self.config = config
|
558 |
+
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
|
559 |
+
self.gradient_checkpointing = False
|
560 |
+
|
561 |
+
def forward(
|
562 |
+
self,
|
563 |
+
hidden_states: torch.Tensor,
|
564 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
565 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
566 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
567 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
568 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
569 |
+
use_cache: Optional[bool] = None,
|
570 |
+
output_attentions: Optional[bool] = False,
|
571 |
+
output_hidden_states: Optional[bool] = False,
|
572 |
+
return_dict: Optional[bool] = True,
|
573 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
574 |
+
all_hidden_states = () if output_hidden_states else None
|
575 |
+
all_self_attentions = () if output_attentions else None
|
576 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
577 |
+
|
578 |
+
if self.gradient_checkpointing and self.training:
|
579 |
+
if use_cache:
|
580 |
+
logger.warning_once(
|
581 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
582 |
+
)
|
583 |
+
use_cache = False
|
584 |
+
|
585 |
+
next_decoder_cache = () if use_cache else None
|
586 |
+
for i, layer_module in enumerate(self.layer):
|
587 |
+
if output_hidden_states:
|
588 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
589 |
+
|
590 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
591 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
592 |
+
|
593 |
+
if self.gradient_checkpointing and self.training:
|
594 |
+
|
595 |
+
def create_custom_forward(module):
|
596 |
+
def custom_forward(*inputs):
|
597 |
+
return module(*inputs, past_key_value, output_attentions)
|
598 |
+
|
599 |
+
return custom_forward
|
600 |
+
|
601 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
602 |
+
create_custom_forward(layer_module),
|
603 |
+
hidden_states,
|
604 |
+
attention_mask,
|
605 |
+
layer_head_mask,
|
606 |
+
encoder_hidden_states,
|
607 |
+
encoder_attention_mask,
|
608 |
+
)
|
609 |
+
else:
|
610 |
+
layer_outputs = layer_module(
|
611 |
+
hidden_states,
|
612 |
+
attention_mask,
|
613 |
+
layer_head_mask,
|
614 |
+
encoder_hidden_states,
|
615 |
+
encoder_attention_mask,
|
616 |
+
past_key_value,
|
617 |
+
output_attentions,
|
618 |
+
)
|
619 |
+
|
620 |
+
hidden_states = layer_outputs[0]
|
621 |
+
if use_cache:
|
622 |
+
next_decoder_cache += (layer_outputs[-1],)
|
623 |
+
if output_attentions:
|
624 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
625 |
+
if self.config.add_cross_attention:
|
626 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
627 |
+
|
628 |
+
if output_hidden_states:
|
629 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
630 |
+
|
631 |
+
if not return_dict:
|
632 |
+
return tuple(
|
633 |
+
v
|
634 |
+
for v in [
|
635 |
+
hidden_states,
|
636 |
+
next_decoder_cache,
|
637 |
+
all_hidden_states,
|
638 |
+
all_self_attentions,
|
639 |
+
all_cross_attentions,
|
640 |
+
]
|
641 |
+
if v is not None
|
642 |
+
)
|
643 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
644 |
+
last_hidden_state=hidden_states,
|
645 |
+
past_key_values=next_decoder_cache,
|
646 |
+
hidden_states=all_hidden_states,
|
647 |
+
attentions=all_self_attentions,
|
648 |
+
cross_attentions=all_cross_attentions,
|
649 |
+
)
|
650 |
+
|
651 |
+
|
652 |
+
class BertPooler(nn.Module):
|
653 |
+
def __init__(self, config):
|
654 |
+
super().__init__()
|
655 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
656 |
+
self.activation = nn.Tanh()
|
657 |
+
|
658 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
659 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
660 |
+
# to the first token.
|
661 |
+
first_token_tensor = hidden_states[:, 0]
|
662 |
+
pooled_output = self.dense(first_token_tensor)
|
663 |
+
pooled_output = self.activation(pooled_output)
|
664 |
+
return pooled_output
|
665 |
+
|
666 |
+
|
667 |
+
class BertPredictionHeadTransform(nn.Module):
|
668 |
+
def __init__(self, config):
|
669 |
+
super().__init__()
|
670 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
671 |
+
if isinstance(config.hidden_act, str):
|
672 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
673 |
+
else:
|
674 |
+
self.transform_act_fn = config.hidden_act
|
675 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
676 |
+
|
677 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
678 |
+
hidden_states = self.dense(hidden_states)
|
679 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
680 |
+
hidden_states = self.LayerNorm(hidden_states)
|
681 |
+
return hidden_states
|
682 |
+
|
683 |
+
|
684 |
+
class BertLMPredictionHead(nn.Module):
|
685 |
+
def __init__(self, config):
|
686 |
+
super().__init__()
|
687 |
+
self.transform = BertPredictionHeadTransform(config)
|
688 |
+
|
689 |
+
# The output weights are the same as the input embeddings, but there is
|
690 |
+
# an output-only bias for each token.
|
691 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
692 |
+
|
693 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
694 |
+
|
695 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
696 |
+
self.decoder.bias = self.bias
|
697 |
+
|
698 |
+
def forward(self, hidden_states):
|
699 |
+
hidden_states = self.transform(hidden_states)
|
700 |
+
hidden_states = self.decoder(hidden_states)
|
701 |
+
return hidden_states
|
702 |
+
|
703 |
+
|
704 |
+
class BertOnlyMLMHead(nn.Module):
|
705 |
+
def __init__(self, config):
|
706 |
+
super().__init__()
|
707 |
+
self.predictions = BertLMPredictionHead(config)
|
708 |
+
|
709 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
710 |
+
prediction_scores = self.predictions(sequence_output)
|
711 |
+
return prediction_scores
|
712 |
+
|
713 |
+
|
714 |
+
class BertOnlyNSPHead(nn.Module):
|
715 |
+
def __init__(self, config):
|
716 |
+
super().__init__()
|
717 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
718 |
+
|
719 |
+
def forward(self, pooled_output):
|
720 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
721 |
+
return seq_relationship_score
|
722 |
+
|
723 |
+
|
724 |
+
class BertPreTrainingHeads(nn.Module):
|
725 |
+
def __init__(self, config):
|
726 |
+
super().__init__()
|
727 |
+
self.predictions = BertLMPredictionHead(config)
|
728 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
729 |
+
|
730 |
+
def forward(self, sequence_output, pooled_output):
|
731 |
+
prediction_scores = self.predictions(sequence_output)
|
732 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
733 |
+
return prediction_scores, seq_relationship_score
|
734 |
+
|
735 |
+
|
736 |
+
class BertPreTrainedModel(PreTrainedModel):
|
737 |
+
"""
|
738 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
739 |
+
models.
|
740 |
+
"""
|
741 |
+
|
742 |
+
config_class = BertConfig
|
743 |
+
load_tf_weights = load_tf_weights_in_bert
|
744 |
+
base_model_prefix = "bert"
|
745 |
+
supports_gradient_checkpointing = True
|
746 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
747 |
+
|
748 |
+
def _init_weights(self, module):
|
749 |
+
"""Initialize the weights"""
|
750 |
+
if isinstance(module, nn.Linear):
|
751 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
752 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
753 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
754 |
+
if module.bias is not None:
|
755 |
+
module.bias.data.zero_()
|
756 |
+
elif isinstance(module, nn.Embedding):
|
757 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
758 |
+
if module.padding_idx is not None:
|
759 |
+
module.weight.data[module.padding_idx].zero_()
|
760 |
+
elif isinstance(module, nn.LayerNorm):
|
761 |
+
module.bias.data.zero_()
|
762 |
+
module.weight.data.fill_(1.0)
|
763 |
+
|
764 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
765 |
+
if isinstance(module, BertEncoder):
|
766 |
+
module.gradient_checkpointing = value
|
767 |
+
|
768 |
+
|
769 |
+
@dataclass
|
770 |
+
class BertForPreTrainingOutput(ModelOutput):
|
771 |
+
"""
|
772 |
+
Output type of [`BertForPreTraining`].
|
773 |
+
|
774 |
+
Args:
|
775 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
776 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
777 |
+
(classification) loss.
|
778 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
779 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
780 |
+
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
781 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
782 |
+
before SoftMax).
|
783 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
784 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
785 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
786 |
+
|
787 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
788 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
789 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
790 |
+
sequence_length)`.
|
791 |
+
|
792 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
793 |
+
heads.
|
794 |
+
"""
|
795 |
+
|
796 |
+
loss: Optional[torch.FloatTensor] = None
|
797 |
+
prediction_logits: torch.FloatTensor = None
|
798 |
+
seq_relationship_logits: torch.FloatTensor = None
|
799 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
800 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
801 |
+
|
802 |
+
|
803 |
+
BERT_START_DOCSTRING = r"""
|
804 |
+
|
805 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
806 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
807 |
+
etc.)
|
808 |
+
|
809 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
810 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
811 |
+
and behavior.
|
812 |
+
|
813 |
+
Parameters:
|
814 |
+
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
|
815 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
816 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
817 |
+
"""
|
818 |
+
|
819 |
+
BERT_INPUTS_DOCSTRING = r"""
|
820 |
+
Args:
|
821 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
822 |
+
Indices of input sequence tokens in the vocabulary.
|
823 |
+
|
824 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
825 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
826 |
+
|
827 |
+
[What are input IDs?](../glossary#input-ids)
|
828 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
829 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
830 |
+
|
831 |
+
- 1 for tokens that are **not masked**,
|
832 |
+
- 0 for tokens that are **masked**.
|
833 |
+
|
834 |
+
[What are attention masks?](../glossary#attention-mask)
|
835 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
836 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
837 |
+
1]`:
|
838 |
+
|
839 |
+
- 0 corresponds to a *sentence A* token,
|
840 |
+
- 1 corresponds to a *sentence B* token.
|
841 |
+
|
842 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
843 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
844 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
845 |
+
config.max_position_embeddings - 1]`.
|
846 |
+
|
847 |
+
[What are position IDs?](../glossary#position-ids)
|
848 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
849 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
850 |
+
|
851 |
+
- 1 indicates the head is **not masked**,
|
852 |
+
- 0 indicates the head is **masked**.
|
853 |
+
|
854 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
855 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
856 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
857 |
+
model's internal embedding lookup matrix.
|
858 |
+
output_attentions (`bool`, *optional*):
|
859 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
860 |
+
tensors for more detail.
|
861 |
+
output_hidden_states (`bool`, *optional*):
|
862 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
863 |
+
more detail.
|
864 |
+
return_dict (`bool`, *optional*):
|
865 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
866 |
+
"""
|
867 |
+
|
868 |
+
|
869 |
+
@add_start_docstrings(
|
870 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
871 |
+
BERT_START_DOCSTRING,
|
872 |
+
)
|
873 |
+
class BertModel(BertPreTrainedModel):
|
874 |
+
"""
|
875 |
+
|
876 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
877 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
878 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
879 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
880 |
+
|
881 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
882 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
883 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
884 |
+
"""
|
885 |
+
|
886 |
+
def __init__(self, config, add_pooling_layer=True):
|
887 |
+
super().__init__(config)
|
888 |
+
self.config = config
|
889 |
+
|
890 |
+
self.embeddings = BertEmbeddings(config)
|
891 |
+
self.encoder = BertEncoder(config)
|
892 |
+
|
893 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
894 |
+
|
895 |
+
# Initialize weights and apply final processing
|
896 |
+
self.post_init()
|
897 |
+
|
898 |
+
def get_input_embeddings(self):
|
899 |
+
return self.embeddings.word_embeddings
|
900 |
+
|
901 |
+
def set_input_embeddings(self, value):
|
902 |
+
self.embeddings.word_embeddings = value
|
903 |
+
|
904 |
+
def _prune_heads(self, heads_to_prune):
|
905 |
+
"""
|
906 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
907 |
+
class PreTrainedModel
|
908 |
+
"""
|
909 |
+
for layer, heads in heads_to_prune.items():
|
910 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
911 |
+
|
912 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
913 |
+
@add_code_sample_docstrings(
|
914 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
915 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
916 |
+
config_class=_CONFIG_FOR_DOC,
|
917 |
+
)
|
918 |
+
def forward(
|
919 |
+
self,
|
920 |
+
input_ids: Optional[torch.Tensor] = None,
|
921 |
+
attention_mask: Optional[torch.Tensor] = None,
|
922 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
923 |
+
position_ids: Optional[torch.Tensor] = None,
|
924 |
+
head_mask: Optional[torch.Tensor] = None,
|
925 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
926 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
927 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
928 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
929 |
+
use_cache: Optional[bool] = None,
|
930 |
+
output_attentions: Optional[bool] = None,
|
931 |
+
output_hidden_states: Optional[bool] = None,
|
932 |
+
return_dict: Optional[bool] = None,
|
933 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
934 |
+
r"""
|
935 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
936 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
937 |
+
the model is configured as a decoder.
|
938 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
939 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
940 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
941 |
+
|
942 |
+
- 1 for tokens that are **not masked**,
|
943 |
+
- 0 for tokens that are **masked**.
|
944 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
945 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
946 |
+
|
947 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
948 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
949 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
950 |
+
use_cache (`bool`, *optional*):
|
951 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
952 |
+
`past_key_values`).
|
953 |
+
"""
|
954 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
955 |
+
output_hidden_states = (
|
956 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
957 |
+
)
|
958 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
959 |
+
|
960 |
+
if self.config.is_decoder:
|
961 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
962 |
+
else:
|
963 |
+
use_cache = False
|
964 |
+
|
965 |
+
if input_ids is not None and inputs_embeds is not None:
|
966 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
967 |
+
elif input_ids is not None:
|
968 |
+
input_shape = input_ids.size()
|
969 |
+
elif inputs_embeds is not None:
|
970 |
+
input_shape = inputs_embeds.size()[:-1]
|
971 |
+
else:
|
972 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
973 |
+
|
974 |
+
batch_size, seq_length = input_shape
|
975 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
976 |
+
|
977 |
+
# past_key_values_length
|
978 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
979 |
+
|
980 |
+
if attention_mask is None:
|
981 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
982 |
+
|
983 |
+
if token_type_ids is None:
|
984 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
985 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
986 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
987 |
+
token_type_ids = buffered_token_type_ids_expanded
|
988 |
+
else:
|
989 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
990 |
+
|
991 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
992 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
993 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
994 |
+
|
995 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
996 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
997 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
998 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
999 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1000 |
+
if encoder_attention_mask is None:
|
1001 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1002 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1003 |
+
else:
|
1004 |
+
encoder_extended_attention_mask = None
|
1005 |
+
|
1006 |
+
# Prepare head mask if needed
|
1007 |
+
# 1.0 in head_mask indicate we keep the head
|
1008 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1009 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1010 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1011 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1012 |
+
|
1013 |
+
embedding_output = self.embeddings(
|
1014 |
+
input_ids=input_ids,
|
1015 |
+
position_ids=position_ids,
|
1016 |
+
token_type_ids=token_type_ids,
|
1017 |
+
inputs_embeds=inputs_embeds,
|
1018 |
+
past_key_values_length=past_key_values_length,
|
1019 |
+
)
|
1020 |
+
encoder_outputs = self.encoder(
|
1021 |
+
embedding_output,
|
1022 |
+
attention_mask=extended_attention_mask,
|
1023 |
+
head_mask=head_mask,
|
1024 |
+
encoder_hidden_states=encoder_hidden_states,
|
1025 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1026 |
+
past_key_values=past_key_values,
|
1027 |
+
use_cache=use_cache,
|
1028 |
+
output_attentions=output_attentions,
|
1029 |
+
output_hidden_states=output_hidden_states,
|
1030 |
+
return_dict=return_dict,
|
1031 |
+
)
|
1032 |
+
sequence_output = encoder_outputs[0]
|
1033 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1034 |
+
|
1035 |
+
if not return_dict:
|
1036 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1037 |
+
|
1038 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1039 |
+
last_hidden_state=sequence_output,
|
1040 |
+
pooler_output=pooled_output,
|
1041 |
+
past_key_values=encoder_outputs.past_key_values,
|
1042 |
+
hidden_states=encoder_outputs.hidden_states,
|
1043 |
+
attentions=encoder_outputs.attentions,
|
1044 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
|
1048 |
+
@add_start_docstrings(
|
1049 |
+
"""
|
1050 |
+
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
1051 |
+
sentence prediction (classification)` head.
|
1052 |
+
""",
|
1053 |
+
BERT_START_DOCSTRING,
|
1054 |
+
)
|
1055 |
+
class BertForPreTraining(BertPreTrainedModel):
|
1056 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias", r"cls.predictions.decoder.weight"]
|
1057 |
+
|
1058 |
+
def __init__(self, config):
|
1059 |
+
super().__init__(config)
|
1060 |
+
|
1061 |
+
self.bert = BertModel(config)
|
1062 |
+
self.cls = BertPreTrainingHeads(config)
|
1063 |
+
|
1064 |
+
# Initialize weights and apply final processing
|
1065 |
+
self.post_init()
|
1066 |
+
|
1067 |
+
def get_output_embeddings(self):
|
1068 |
+
return self.cls.predictions.decoder
|
1069 |
+
|
1070 |
+
def set_output_embeddings(self, new_embeddings):
|
1071 |
+
self.cls.predictions.decoder = new_embeddings
|
1072 |
+
|
1073 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1074 |
+
@replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1075 |
+
def forward(
|
1076 |
+
self,
|
1077 |
+
input_ids: Optional[torch.Tensor] = None,
|
1078 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1079 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1080 |
+
position_ids: Optional[torch.Tensor] = None,
|
1081 |
+
head_mask: Optional[torch.Tensor] = None,
|
1082 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1083 |
+
labels: Optional[torch.Tensor] = None,
|
1084 |
+
next_sentence_label: Optional[torch.Tensor] = None,
|
1085 |
+
output_attentions: Optional[bool] = None,
|
1086 |
+
output_hidden_states: Optional[bool] = None,
|
1087 |
+
return_dict: Optional[bool] = None,
|
1088 |
+
) -> Union[Tuple[torch.Tensor], BertForPreTrainingOutput]:
|
1089 |
+
r"""
|
1090 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1091 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1092 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
|
1093 |
+
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1094 |
+
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1095 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
|
1096 |
+
pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
|
1097 |
+
|
1098 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1099 |
+
- 1 indicates sequence B is a random sequence.
|
1100 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1101 |
+
Used to hide legacy arguments that have been deprecated.
|
1102 |
+
|
1103 |
+
Returns:
|
1104 |
+
|
1105 |
+
Example:
|
1106 |
+
|
1107 |
+
```python
|
1108 |
+
>>> from transformers import AutoTokenizer, BertForPreTraining
|
1109 |
+
>>> import torch
|
1110 |
+
|
1111 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
1112 |
+
>>> model = BertForPreTraining.from_pretrained("bert-base-uncased")
|
1113 |
+
|
1114 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1115 |
+
>>> outputs = model(**inputs)
|
1116 |
+
|
1117 |
+
>>> prediction_logits = outputs.prediction_logits
|
1118 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
1119 |
+
```
|
1120 |
+
"""
|
1121 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1122 |
+
|
1123 |
+
outputs = self.bert(
|
1124 |
+
input_ids,
|
1125 |
+
attention_mask=attention_mask,
|
1126 |
+
token_type_ids=token_type_ids,
|
1127 |
+
position_ids=position_ids,
|
1128 |
+
head_mask=head_mask,
|
1129 |
+
inputs_embeds=inputs_embeds,
|
1130 |
+
output_attentions=output_attentions,
|
1131 |
+
output_hidden_states=output_hidden_states,
|
1132 |
+
return_dict=return_dict,
|
1133 |
+
)
|
1134 |
+
|
1135 |
+
sequence_output, pooled_output = outputs[:2]
|
1136 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
1137 |
+
|
1138 |
+
total_loss = None
|
1139 |
+
if labels is not None and next_sentence_label is not None:
|
1140 |
+
loss_fct = CrossEntropyLoss()
|
1141 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1142 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
1143 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
1144 |
+
|
1145 |
+
if not return_dict:
|
1146 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
1147 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1148 |
+
|
1149 |
+
return BertForPreTrainingOutput(
|
1150 |
+
loss=total_loss,
|
1151 |
+
prediction_logits=prediction_scores,
|
1152 |
+
seq_relationship_logits=seq_relationship_score,
|
1153 |
+
hidden_states=outputs.hidden_states,
|
1154 |
+
attentions=outputs.attentions,
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
|
1158 |
+
@add_start_docstrings(
|
1159 |
+
"""Bert Model with a `language modeling` head on top for CLM fine-tuning.""", BERT_START_DOCSTRING
|
1160 |
+
)
|
1161 |
+
class BertCustomLMHeadModel(BertPreTrainedModel):
|
1162 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1163 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias", r"cls.predictions.decoder.weight"]
|
1164 |
+
|
1165 |
+
def __init__(self, config):
|
1166 |
+
super().__init__(config)
|
1167 |
+
|
1168 |
+
if not config.is_decoder:
|
1169 |
+
logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`")
|
1170 |
+
|
1171 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1172 |
+
self.cls = BertOnlyMLMHead(config)
|
1173 |
+
|
1174 |
+
# Initialize weights and apply final processing
|
1175 |
+
self.post_init()
|
1176 |
+
|
1177 |
+
def get_output_embeddings(self):
|
1178 |
+
return self.cls.predictions.decoder
|
1179 |
+
|
1180 |
+
def set_output_embeddings(self, new_embeddings):
|
1181 |
+
self.cls.predictions.decoder = new_embeddings
|
1182 |
+
|
1183 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1184 |
+
@add_code_sample_docstrings(
|
1185 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1186 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
1187 |
+
config_class=_CONFIG_FOR_DOC,
|
1188 |
+
)
|
1189 |
+
def forward(
|
1190 |
+
self,
|
1191 |
+
input_ids: Optional[torch.Tensor] = None,
|
1192 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1193 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1194 |
+
position_ids: Optional[torch.Tensor] = None,
|
1195 |
+
head_mask: Optional[torch.Tensor] = None,
|
1196 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1197 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1198 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1199 |
+
labels: Optional[torch.Tensor] = None,
|
1200 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
1201 |
+
use_cache: Optional[bool] = None,
|
1202 |
+
output_attentions: Optional[bool] = None,
|
1203 |
+
output_hidden_states: Optional[bool] = None,
|
1204 |
+
return_dict: Optional[bool] = None,
|
1205 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
1206 |
+
r"""
|
1207 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1208 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1209 |
+
the model is configured as a decoder.
|
1210 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1211 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1212 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1213 |
+
|
1214 |
+
- 1 for tokens that are **not masked**,
|
1215 |
+
- 0 for tokens that are **masked**.
|
1216 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1217 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1218 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
1219 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
1220 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1221 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1222 |
+
|
1223 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1224 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1225 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1226 |
+
use_cache (`bool`, *optional*):
|
1227 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1228 |
+
`past_key_values`).
|
1229 |
+
"""
|
1230 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1231 |
+
if labels is not None:
|
1232 |
+
use_cache = False
|
1233 |
+
|
1234 |
+
outputs = self.bert(
|
1235 |
+
input_ids,
|
1236 |
+
attention_mask=attention_mask,
|
1237 |
+
token_type_ids=token_type_ids,
|
1238 |
+
position_ids=position_ids,
|
1239 |
+
head_mask=head_mask,
|
1240 |
+
inputs_embeds=inputs_embeds,
|
1241 |
+
encoder_hidden_states=encoder_hidden_states,
|
1242 |
+
encoder_attention_mask=encoder_attention_mask,
|
1243 |
+
past_key_values=past_key_values,
|
1244 |
+
use_cache=use_cache,
|
1245 |
+
output_attentions=output_attentions,
|
1246 |
+
output_hidden_states=output_hidden_states,
|
1247 |
+
return_dict=return_dict,
|
1248 |
+
)
|
1249 |
+
|
1250 |
+
sequence_output = outputs[0]
|
1251 |
+
prediction_scores = self.cls(sequence_output)
|
1252 |
+
|
1253 |
+
lm_loss = None
|
1254 |
+
if labels is not None:
|
1255 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1256 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1257 |
+
labels = labels[:, 1:].contiguous()
|
1258 |
+
loss_fct = CrossEntropyLoss()
|
1259 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1260 |
+
|
1261 |
+
if not return_dict:
|
1262 |
+
output = (prediction_scores,) + outputs[2:]
|
1263 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1264 |
+
|
1265 |
+
return CausalLMOutputWithCrossAttentions(
|
1266 |
+
loss=lm_loss,
|
1267 |
+
logits=prediction_scores,
|
1268 |
+
past_key_values=outputs.past_key_values,
|
1269 |
+
hidden_states=outputs.hidden_states,
|
1270 |
+
attentions=outputs.attentions,
|
1271 |
+
cross_attentions=outputs.cross_attentions,
|
1272 |
+
)
|
1273 |
+
|
1274 |
+
def prepare_inputs_for_generation(
|
1275 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=True, **model_kwargs
|
1276 |
+
):
|
1277 |
+
input_shape = input_ids.shape
|
1278 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1279 |
+
if attention_mask is None:
|
1280 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1281 |
+
|
1282 |
+
# cut decoder_input_ids if past_key_values is used
|
1283 |
+
if past_key_values is not None:
|
1284 |
+
input_ids = input_ids[:, -1:]
|
1285 |
+
|
1286 |
+
return {
|
1287 |
+
"input_ids": input_ids,
|
1288 |
+
"attention_mask": attention_mask,
|
1289 |
+
"past_key_values": past_key_values,
|
1290 |
+
"use_cache": use_cache,
|
1291 |
+
}
|
1292 |
+
|
1293 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1294 |
+
reordered_past = ()
|
1295 |
+
for layer_past in past_key_values:
|
1296 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1297 |
+
return reordered_past
|
1298 |
+
|
1299 |
+
|
1300 |
+
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
|
1301 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
1302 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1303 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias", r"cls.predictions.decoder.weight"]
|
1304 |
+
|
1305 |
+
def __init__(self, config):
|
1306 |
+
super().__init__(config)
|
1307 |
+
|
1308 |
+
if config.is_decoder:
|
1309 |
+
logger.warning(
|
1310 |
+
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
|
1311 |
+
"bi-directional self-attention."
|
1312 |
+
)
|
1313 |
+
|
1314 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1315 |
+
self.cls = BertOnlyMLMHead(config)
|
1316 |
+
|
1317 |
+
# Initialize weights and apply final processing
|
1318 |
+
self.post_init()
|
1319 |
+
|
1320 |
+
def get_output_embeddings(self):
|
1321 |
+
return self.cls.predictions.decoder
|
1322 |
+
|
1323 |
+
def set_output_embeddings(self, new_embeddings):
|
1324 |
+
self.cls.predictions.decoder = new_embeddings
|
1325 |
+
|
1326 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1327 |
+
@add_code_sample_docstrings(
|
1328 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1329 |
+
output_type=MaskedLMOutput,
|
1330 |
+
config_class=_CONFIG_FOR_DOC,
|
1331 |
+
expected_output="'paris'",
|
1332 |
+
expected_loss=0.88,
|
1333 |
+
)
|
1334 |
+
def forward(
|
1335 |
+
self,
|
1336 |
+
input_ids: Optional[torch.Tensor] = None,
|
1337 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1338 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1339 |
+
position_ids: Optional[torch.Tensor] = None,
|
1340 |
+
head_mask: Optional[torch.Tensor] = None,
|
1341 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1342 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1343 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1344 |
+
labels: Optional[torch.Tensor] = None,
|
1345 |
+
output_attentions: Optional[bool] = None,
|
1346 |
+
output_hidden_states: Optional[bool] = None,
|
1347 |
+
return_dict: Optional[bool] = None,
|
1348 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1349 |
+
r"""
|
1350 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1351 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1352 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1353 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1354 |
+
"""
|
1355 |
+
|
1356 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1357 |
+
|
1358 |
+
outputs = self.bert(
|
1359 |
+
input_ids,
|
1360 |
+
attention_mask=attention_mask,
|
1361 |
+
token_type_ids=token_type_ids,
|
1362 |
+
position_ids=position_ids,
|
1363 |
+
head_mask=head_mask,
|
1364 |
+
inputs_embeds=inputs_embeds,
|
1365 |
+
encoder_hidden_states=encoder_hidden_states,
|
1366 |
+
encoder_attention_mask=encoder_attention_mask,
|
1367 |
+
output_attentions=output_attentions,
|
1368 |
+
output_hidden_states=output_hidden_states,
|
1369 |
+
return_dict=return_dict,
|
1370 |
+
)
|
1371 |
+
|
1372 |
+
sequence_output = outputs[0]
|
1373 |
+
prediction_scores = self.cls(sequence_output)
|
1374 |
+
|
1375 |
+
masked_lm_loss = None
|
1376 |
+
if labels is not None:
|
1377 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1378 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1379 |
+
|
1380 |
+
if not return_dict:
|
1381 |
+
output = (prediction_scores,) + outputs[2:]
|
1382 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1383 |
+
|
1384 |
+
return MaskedLMOutput(
|
1385 |
+
loss=masked_lm_loss,
|
1386 |
+
logits=prediction_scores,
|
1387 |
+
hidden_states=outputs.hidden_states,
|
1388 |
+
attentions=outputs.attentions,
|
1389 |
+
)
|
1390 |
+
|
1391 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
1392 |
+
input_shape = input_ids.shape
|
1393 |
+
effective_batch_size = input_shape[0]
|
1394 |
+
|
1395 |
+
# add a dummy token
|
1396 |
+
if self.config.pad_token_id is None:
|
1397 |
+
raise ValueError("The PAD token should be defined for generation")
|
1398 |
+
|
1399 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
1400 |
+
dummy_token = torch.full(
|
1401 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
1402 |
+
)
|
1403 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1404 |
+
|
1405 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1406 |
+
|
1407 |
+
|
1408 |
+
@add_start_docstrings(
|
1409 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
|
1410 |
+
BERT_START_DOCSTRING,
|
1411 |
+
)
|
1412 |
+
class BertForNextSentencePrediction(BertPreTrainedModel):
|
1413 |
+
def __init__(self, config):
|
1414 |
+
super().__init__(config)
|
1415 |
+
|
1416 |
+
self.bert = BertModel(config)
|
1417 |
+
self.cls = BertOnlyNSPHead(config)
|
1418 |
+
|
1419 |
+
# Initialize weights and apply final processing
|
1420 |
+
self.post_init()
|
1421 |
+
|
1422 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1423 |
+
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
1424 |
+
def forward(
|
1425 |
+
self,
|
1426 |
+
input_ids: Optional[torch.Tensor] = None,
|
1427 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1428 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1429 |
+
position_ids: Optional[torch.Tensor] = None,
|
1430 |
+
head_mask: Optional[torch.Tensor] = None,
|
1431 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1432 |
+
labels: Optional[torch.Tensor] = None,
|
1433 |
+
output_attentions: Optional[bool] = None,
|
1434 |
+
output_hidden_states: Optional[bool] = None,
|
1435 |
+
return_dict: Optional[bool] = None,
|
1436 |
+
**kwargs,
|
1437 |
+
) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
|
1438 |
+
r"""
|
1439 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1440 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1441 |
+
(see `input_ids` docstring). Indices should be in `[0, 1]`:
|
1442 |
+
|
1443 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1444 |
+
- 1 indicates sequence B is a random sequence.
|
1445 |
+
|
1446 |
+
Returns:
|
1447 |
+
|
1448 |
+
Example:
|
1449 |
+
|
1450 |
+
```python
|
1451 |
+
>>> from transformers import AutoTokenizer, BertForNextSentencePrediction
|
1452 |
+
>>> import torch
|
1453 |
+
|
1454 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
1455 |
+
>>> model = BertForNextSentencePrediction.from_pretrained("bert-base-uncased")
|
1456 |
+
|
1457 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1458 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1459 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
|
1460 |
+
|
1461 |
+
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
|
1462 |
+
>>> logits = outputs.logits
|
1463 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
1464 |
+
```
|
1465 |
+
"""
|
1466 |
+
|
1467 |
+
if "next_sentence_label" in kwargs:
|
1468 |
+
warnings.warn(
|
1469 |
+
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
|
1470 |
+
" `labels` instead.",
|
1471 |
+
FutureWarning,
|
1472 |
+
)
|
1473 |
+
labels = kwargs.pop("next_sentence_label")
|
1474 |
+
|
1475 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1476 |
+
|
1477 |
+
outputs = self.bert(
|
1478 |
+
input_ids,
|
1479 |
+
attention_mask=attention_mask,
|
1480 |
+
token_type_ids=token_type_ids,
|
1481 |
+
position_ids=position_ids,
|
1482 |
+
head_mask=head_mask,
|
1483 |
+
inputs_embeds=inputs_embeds,
|
1484 |
+
output_attentions=output_attentions,
|
1485 |
+
output_hidden_states=output_hidden_states,
|
1486 |
+
return_dict=return_dict,
|
1487 |
+
)
|
1488 |
+
|
1489 |
+
pooled_output = outputs[1]
|
1490 |
+
|
1491 |
+
seq_relationship_scores = self.cls(pooled_output)
|
1492 |
+
|
1493 |
+
next_sentence_loss = None
|
1494 |
+
if labels is not None:
|
1495 |
+
loss_fct = CrossEntropyLoss()
|
1496 |
+
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
|
1497 |
+
|
1498 |
+
if not return_dict:
|
1499 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
1500 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
1501 |
+
|
1502 |
+
return NextSentencePredictorOutput(
|
1503 |
+
loss=next_sentence_loss,
|
1504 |
+
logits=seq_relationship_scores,
|
1505 |
+
hidden_states=outputs.hidden_states,
|
1506 |
+
attentions=outputs.attentions,
|
1507 |
+
)
|
1508 |
+
|
1509 |
+
|
1510 |
+
@add_start_docstrings(
|
1511 |
+
"""
|
1512 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1513 |
+
output) e.g. for GLUE tasks.
|
1514 |
+
""",
|
1515 |
+
BERT_START_DOCSTRING,
|
1516 |
+
)
|
1517 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
1518 |
+
def __init__(self, config):
|
1519 |
+
super().__init__(config)
|
1520 |
+
self.num_labels = config.num_labels
|
1521 |
+
self.config = config
|
1522 |
+
|
1523 |
+
self.bert = BertModel(config)
|
1524 |
+
classifier_dropout = (
|
1525 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1526 |
+
)
|
1527 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1528 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1529 |
+
|
1530 |
+
# Initialize weights and apply final processing
|
1531 |
+
self.post_init()
|
1532 |
+
|
1533 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1534 |
+
@add_code_sample_docstrings(
|
1535 |
+
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
|
1536 |
+
output_type=SequenceClassifierOutput,
|
1537 |
+
config_class=_CONFIG_FOR_DOC,
|
1538 |
+
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
|
1539 |
+
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
|
1540 |
+
)
|
1541 |
+
def forward(
|
1542 |
+
self,
|
1543 |
+
input_ids: Optional[torch.Tensor] = None,
|
1544 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1545 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1546 |
+
position_ids: Optional[torch.Tensor] = None,
|
1547 |
+
head_mask: Optional[torch.Tensor] = None,
|
1548 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1549 |
+
labels: Optional[torch.Tensor] = None,
|
1550 |
+
output_attentions: Optional[bool] = None,
|
1551 |
+
output_hidden_states: Optional[bool] = None,
|
1552 |
+
return_dict: Optional[bool] = None,
|
1553 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1554 |
+
r"""
|
1555 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1556 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1557 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1558 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1559 |
+
"""
|
1560 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1561 |
+
|
1562 |
+
outputs = self.bert(
|
1563 |
+
input_ids,
|
1564 |
+
attention_mask=attention_mask,
|
1565 |
+
token_type_ids=token_type_ids,
|
1566 |
+
position_ids=position_ids,
|
1567 |
+
head_mask=head_mask,
|
1568 |
+
inputs_embeds=inputs_embeds,
|
1569 |
+
output_attentions=output_attentions,
|
1570 |
+
output_hidden_states=output_hidden_states,
|
1571 |
+
return_dict=return_dict,
|
1572 |
+
)
|
1573 |
+
|
1574 |
+
pooled_output = outputs[1]
|
1575 |
+
|
1576 |
+
pooled_output = self.dropout(pooled_output)
|
1577 |
+
logits = self.classifier(pooled_output)
|
1578 |
+
|
1579 |
+
loss = None
|
1580 |
+
if labels is not None:
|
1581 |
+
if self.config.problem_type is None:
|
1582 |
+
if self.num_labels == 1:
|
1583 |
+
self.config.problem_type = "regression"
|
1584 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1585 |
+
self.config.problem_type = "single_label_classification"
|
1586 |
+
else:
|
1587 |
+
self.config.problem_type = "multi_label_classification"
|
1588 |
+
|
1589 |
+
if self.config.problem_type == "regression":
|
1590 |
+
loss_fct = MSELoss()
|
1591 |
+
if self.num_labels == 1:
|
1592 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1593 |
+
else:
|
1594 |
+
loss = loss_fct(logits, labels)
|
1595 |
+
elif self.config.problem_type == "single_label_classification":
|
1596 |
+
loss_fct = CrossEntropyLoss()
|
1597 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1598 |
+
elif self.config.problem_type == "multi_label_classification":
|
1599 |
+
loss_fct = BCEWithLogitsLoss()
|
1600 |
+
loss = loss_fct(logits, labels)
|
1601 |
+
if not return_dict:
|
1602 |
+
output = (logits,) + outputs[2:]
|
1603 |
+
return ((loss,) + output) if loss is not None else output
|
1604 |
+
|
1605 |
+
return SequenceClassifierOutput(
|
1606 |
+
loss=loss,
|
1607 |
+
logits=logits,
|
1608 |
+
hidden_states=outputs.hidden_states,
|
1609 |
+
attentions=outputs.attentions,
|
1610 |
+
)
|
1611 |
+
|
1612 |
+
|
1613 |
+
@add_start_docstrings(
|
1614 |
+
"""
|
1615 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1616 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1617 |
+
""",
|
1618 |
+
BERT_START_DOCSTRING,
|
1619 |
+
)
|
1620 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
1621 |
+
def __init__(self, config):
|
1622 |
+
super().__init__(config)
|
1623 |
+
|
1624 |
+
self.bert = BertModel(config)
|
1625 |
+
classifier_dropout = (
|
1626 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1627 |
+
)
|
1628 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1629 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1630 |
+
|
1631 |
+
# Initialize weights and apply final processing
|
1632 |
+
self.post_init()
|
1633 |
+
|
1634 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1635 |
+
@add_code_sample_docstrings(
|
1636 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1637 |
+
output_type=MultipleChoiceModelOutput,
|
1638 |
+
config_class=_CONFIG_FOR_DOC,
|
1639 |
+
)
|
1640 |
+
def forward(
|
1641 |
+
self,
|
1642 |
+
input_ids: Optional[torch.Tensor] = None,
|
1643 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1644 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1645 |
+
position_ids: Optional[torch.Tensor] = None,
|
1646 |
+
head_mask: Optional[torch.Tensor] = None,
|
1647 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1648 |
+
labels: Optional[torch.Tensor] = None,
|
1649 |
+
output_attentions: Optional[bool] = None,
|
1650 |
+
output_hidden_states: Optional[bool] = None,
|
1651 |
+
return_dict: Optional[bool] = None,
|
1652 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1653 |
+
r"""
|
1654 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1655 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1656 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1657 |
+
`input_ids` above)
|
1658 |
+
"""
|
1659 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1660 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1661 |
+
|
1662 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1663 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1664 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1665 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1666 |
+
inputs_embeds = (
|
1667 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1668 |
+
if inputs_embeds is not None
|
1669 |
+
else None
|
1670 |
+
)
|
1671 |
+
|
1672 |
+
outputs = self.bert(
|
1673 |
+
input_ids,
|
1674 |
+
attention_mask=attention_mask,
|
1675 |
+
token_type_ids=token_type_ids,
|
1676 |
+
position_ids=position_ids,
|
1677 |
+
head_mask=head_mask,
|
1678 |
+
inputs_embeds=inputs_embeds,
|
1679 |
+
output_attentions=output_attentions,
|
1680 |
+
output_hidden_states=output_hidden_states,
|
1681 |
+
return_dict=return_dict,
|
1682 |
+
)
|
1683 |
+
|
1684 |
+
pooled_output = outputs[1]
|
1685 |
+
|
1686 |
+
pooled_output = self.dropout(pooled_output)
|
1687 |
+
logits = self.classifier(pooled_output)
|
1688 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1689 |
+
|
1690 |
+
loss = None
|
1691 |
+
if labels is not None:
|
1692 |
+
loss_fct = CrossEntropyLoss()
|
1693 |
+
loss = loss_fct(reshaped_logits, labels)
|
1694 |
+
|
1695 |
+
if not return_dict:
|
1696 |
+
output = (reshaped_logits,) + outputs[2:]
|
1697 |
+
return ((loss,) + output) if loss is not None else output
|
1698 |
+
|
1699 |
+
return MultipleChoiceModelOutput(
|
1700 |
+
loss=loss,
|
1701 |
+
logits=reshaped_logits,
|
1702 |
+
hidden_states=outputs.hidden_states,
|
1703 |
+
attentions=outputs.attentions,
|
1704 |
+
)
|
1705 |
+
|
1706 |
+
|
1707 |
+
@add_start_docstrings(
|
1708 |
+
"""
|
1709 |
+
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1710 |
+
Named-Entity-Recognition (NER) tasks.
|
1711 |
+
""",
|
1712 |
+
BERT_START_DOCSTRING,
|
1713 |
+
)
|
1714 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
1715 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1716 |
+
|
1717 |
+
def __init__(self, config):
|
1718 |
+
super().__init__(config)
|
1719 |
+
self.num_labels = config.num_labels
|
1720 |
+
|
1721 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1722 |
+
classifier_dropout = (
|
1723 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1724 |
+
)
|
1725 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1726 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1727 |
+
|
1728 |
+
# Initialize weights and apply final processing
|
1729 |
+
self.post_init()
|
1730 |
+
|
1731 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1732 |
+
@add_code_sample_docstrings(
|
1733 |
+
checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
|
1734 |
+
output_type=TokenClassifierOutput,
|
1735 |
+
config_class=_CONFIG_FOR_DOC,
|
1736 |
+
expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
|
1737 |
+
expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
|
1738 |
+
)
|
1739 |
+
def forward(
|
1740 |
+
self,
|
1741 |
+
input_ids: Optional[torch.Tensor] = None,
|
1742 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1743 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1744 |
+
position_ids: Optional[torch.Tensor] = None,
|
1745 |
+
head_mask: Optional[torch.Tensor] = None,
|
1746 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1747 |
+
labels: Optional[torch.Tensor] = None,
|
1748 |
+
output_attentions: Optional[bool] = None,
|
1749 |
+
output_hidden_states: Optional[bool] = None,
|
1750 |
+
return_dict: Optional[bool] = None,
|
1751 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1752 |
+
r"""
|
1753 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1754 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1755 |
+
"""
|
1756 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1757 |
+
|
1758 |
+
outputs = self.bert(
|
1759 |
+
input_ids,
|
1760 |
+
attention_mask=attention_mask,
|
1761 |
+
token_type_ids=token_type_ids,
|
1762 |
+
position_ids=position_ids,
|
1763 |
+
head_mask=head_mask,
|
1764 |
+
inputs_embeds=inputs_embeds,
|
1765 |
+
output_attentions=output_attentions,
|
1766 |
+
output_hidden_states=output_hidden_states,
|
1767 |
+
return_dict=return_dict,
|
1768 |
+
)
|
1769 |
+
|
1770 |
+
sequence_output = outputs[0]
|
1771 |
+
|
1772 |
+
sequence_output = self.dropout(sequence_output)
|
1773 |
+
logits = self.classifier(sequence_output)
|
1774 |
+
|
1775 |
+
loss = None
|
1776 |
+
if labels is not None:
|
1777 |
+
loss_fct = CrossEntropyLoss()
|
1778 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1779 |
+
|
1780 |
+
if not return_dict:
|
1781 |
+
output = (logits,) + outputs[2:]
|
1782 |
+
return ((loss,) + output) if loss is not None else output
|
1783 |
+
|
1784 |
+
return TokenClassifierOutput(
|
1785 |
+
loss=loss,
|
1786 |
+
logits=logits,
|
1787 |
+
hidden_states=outputs.hidden_states,
|
1788 |
+
attentions=outputs.attentions,
|
1789 |
+
)
|
1790 |
+
|
1791 |
+
|
1792 |
+
@add_start_docstrings(
|
1793 |
+
"""
|
1794 |
+
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1795 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1796 |
+
""",
|
1797 |
+
BERT_START_DOCSTRING,
|
1798 |
+
)
|
1799 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
1800 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1801 |
+
|
1802 |
+
def __init__(self, config):
|
1803 |
+
super().__init__(config)
|
1804 |
+
self.num_labels = config.num_labels
|
1805 |
+
|
1806 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1807 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1808 |
+
|
1809 |
+
# Initialize weights and apply final processing
|
1810 |
+
self.post_init()
|
1811 |
+
|
1812 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1813 |
+
@add_code_sample_docstrings(
|
1814 |
+
checkpoint=_CHECKPOINT_FOR_QA,
|
1815 |
+
output_type=QuestionAnsweringModelOutput,
|
1816 |
+
config_class=_CONFIG_FOR_DOC,
|
1817 |
+
qa_target_start_index=_QA_TARGET_START_INDEX,
|
1818 |
+
qa_target_end_index=_QA_TARGET_END_INDEX,
|
1819 |
+
expected_output=_QA_EXPECTED_OUTPUT,
|
1820 |
+
expected_loss=_QA_EXPECTED_LOSS,
|
1821 |
+
)
|
1822 |
+
def forward(
|
1823 |
+
self,
|
1824 |
+
input_ids: Optional[torch.Tensor] = None,
|
1825 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1826 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1827 |
+
position_ids: Optional[torch.Tensor] = None,
|
1828 |
+
head_mask: Optional[torch.Tensor] = None,
|
1829 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1830 |
+
start_positions: Optional[torch.Tensor] = None,
|
1831 |
+
end_positions: Optional[torch.Tensor] = None,
|
1832 |
+
output_attentions: Optional[bool] = None,
|
1833 |
+
output_hidden_states: Optional[bool] = None,
|
1834 |
+
return_dict: Optional[bool] = None,
|
1835 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1836 |
+
r"""
|
1837 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1838 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1839 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1840 |
+
are not taken into account for computing the loss.
|
1841 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1842 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1843 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1844 |
+
are not taken into account for computing the loss.
|
1845 |
+
"""
|
1846 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1847 |
+
|
1848 |
+
outputs = self.bert(
|
1849 |
+
input_ids,
|
1850 |
+
attention_mask=attention_mask,
|
1851 |
+
token_type_ids=token_type_ids,
|
1852 |
+
position_ids=position_ids,
|
1853 |
+
head_mask=head_mask,
|
1854 |
+
inputs_embeds=inputs_embeds,
|
1855 |
+
output_attentions=output_attentions,
|
1856 |
+
output_hidden_states=output_hidden_states,
|
1857 |
+
return_dict=return_dict,
|
1858 |
+
)
|
1859 |
+
|
1860 |
+
sequence_output = outputs[0]
|
1861 |
+
|
1862 |
+
logits = self.qa_outputs(sequence_output)
|
1863 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1864 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1865 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1866 |
+
|
1867 |
+
total_loss = None
|
1868 |
+
if start_positions is not None and end_positions is not None:
|
1869 |
+
# If we are on multi-GPU, split add a dimension
|
1870 |
+
if len(start_positions.size()) > 1:
|
1871 |
+
start_positions = start_positions.squeeze(-1)
|
1872 |
+
if len(end_positions.size()) > 1:
|
1873 |
+
end_positions = end_positions.squeeze(-1)
|
1874 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1875 |
+
ignored_index = start_logits.size(1)
|
1876 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1877 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1878 |
+
|
1879 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1880 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1881 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1882 |
+
total_loss = (start_loss + end_loss) / 2
|
1883 |
+
|
1884 |
+
if not return_dict:
|
1885 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1886 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1887 |
+
|
1888 |
+
return QuestionAnsweringModelOutput(
|
1889 |
+
loss=total_loss,
|
1890 |
+
start_logits=start_logits,
|
1891 |
+
end_logits=end_logits,
|
1892 |
+
hidden_states=outputs.hidden_states,
|
1893 |
+
attentions=outputs.attentions,
|
1894 |
+
)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:545d8feae7cdaa752dfcecd8d480928b31a0f7a0b494877c9ab5ddf504906703
|
3 |
+
size 383481
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8961e0116b64f7aa000cdee56f226922e47168126dfc846a85b935b259311edf
|
3 |
+
size 472416
|
tokenizer.json
ADDED
@@ -0,0 +1,1274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "1.0",
|
3 |
+
"truncation": null,
|
4 |
+
"padding": null,
|
5 |
+
"added_tokens": [
|
6 |
+
{
|
7 |
+
"id": 0,
|
8 |
+
"content": "[PAD]",
|
9 |
+
"single_word": false,
|
10 |
+
"lstrip": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"special": true
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"id": 1,
|
17 |
+
"content": "[UNK]",
|
18 |
+
"single_word": false,
|
19 |
+
"lstrip": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"special": true
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"id": 2,
|
26 |
+
"content": "[CLS]",
|
27 |
+
"single_word": false,
|
28 |
+
"lstrip": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"special": true
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"id": 3,
|
35 |
+
"content": "[SEP]",
|
36 |
+
"single_word": false,
|
37 |
+
"lstrip": false,
|
38 |
+
"rstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"special": true
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"id": 4,
|
44 |
+
"content": "[MASK]",
|
45 |
+
"single_word": false,
|
46 |
+
"lstrip": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
],
|
52 |
+
"normalizer": {
|
53 |
+
"type": "BertNormalizer",
|
54 |
+
"clean_text": true,
|
55 |
+
"handle_chinese_chars": true,
|
56 |
+
"strip_accents": null,
|
57 |
+
"lowercase": true
|
58 |
+
},
|
59 |
+
"pre_tokenizer": {
|
60 |
+
"type": "BertPreTokenizer"
|
61 |
+
},
|
62 |
+
"post_processor": {
|
63 |
+
"type": "TemplateProcessing",
|
64 |
+
"single": [
|
65 |
+
{
|
66 |
+
"SpecialToken": {
|
67 |
+
"id": "[CLS]",
|
68 |
+
"type_id": 0
|
69 |
+
}
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"Sequence": {
|
73 |
+
"id": "A",
|
74 |
+
"type_id": 0
|
75 |
+
}
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"SpecialToken": {
|
79 |
+
"id": "[SEP]",
|
80 |
+
"type_id": 0
|
81 |
+
}
|
82 |
+
}
|
83 |
+
],
|
84 |
+
"pair": [
|
85 |
+
{
|
86 |
+
"SpecialToken": {
|
87 |
+
"id": "[CLS]",
|
88 |
+
"type_id": 0
|
89 |
+
}
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"Sequence": {
|
93 |
+
"id": "A",
|
94 |
+
"type_id": 0
|
95 |
+
}
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"SpecialToken": {
|
99 |
+
"id": "[SEP]",
|
100 |
+
"type_id": 0
|
101 |
+
}
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"Sequence": {
|
105 |
+
"id": "B",
|
106 |
+
"type_id": 1
|
107 |
+
}
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"SpecialToken": {
|
111 |
+
"id": "[SEP]",
|
112 |
+
"type_id": 1
|
113 |
+
}
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"special_tokens": {
|
117 |
+
"[CLS]": {
|
118 |
+
"id": "[CLS]",
|
119 |
+
"ids": [
|
120 |
+
2
|
121 |
+
],
|
122 |
+
"tokens": [
|
123 |
+
"[CLS]"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
"[SEP]": {
|
127 |
+
"id": "[SEP]",
|
128 |
+
"ids": [
|
129 |
+
3
|
130 |
+
],
|
131 |
+
"tokens": [
|
132 |
+
"[SEP]"
|
133 |
+
]
|
134 |
+
}
|
135 |
+
}
|
136 |
+
},
|
137 |
+
"decoder": {
|
138 |
+
"type": "WordPiece",
|
139 |
+
"prefix": "##",
|
140 |
+
"cleanup": true
|
141 |
+
},
|
142 |
+
"model": {
|
143 |
+
"type": "WordPiece",
|
144 |
+
"unk_token": "[UNK]",
|
145 |
+
"continuing_subword_prefix": "##",
|
146 |
+
"max_input_chars_per_word": 100,
|
147 |
+
"vocab": {
|
148 |
+
"[PAD]": 0,
|
149 |
+
"[UNK]": 1,
|
150 |
+
"[CLS]": 2,
|
151 |
+
"[SEP]": 3,
|
152 |
+
"[MASK]": 4,
|
153 |
+
"!": 5,
|
154 |
+
"\"": 6,
|
155 |
+
"#": 7,
|
156 |
+
"$": 8,
|
157 |
+
"%": 9,
|
158 |
+
"&": 10,
|
159 |
+
"'": 11,
|
160 |
+
"(": 12,
|
161 |
+
")": 13,
|
162 |
+
"*": 14,
|
163 |
+
"+": 15,
|
164 |
+
",": 16,
|
165 |
+
"-": 17,
|
166 |
+
".": 18,
|
167 |
+
"/": 19,
|
168 |
+
"0": 20,
|
169 |
+
"1": 21,
|
170 |
+
"2": 22,
|
171 |
+
"3": 23,
|
172 |
+
"4": 24,
|
173 |
+
"5": 25,
|
174 |
+
"6": 26,
|
175 |
+
"7": 27,
|
176 |
+
"8": 28,
|
177 |
+
"9": 29,
|
178 |
+
":": 30,
|
179 |
+
";": 31,
|
180 |
+
"<": 32,
|
181 |
+
"=": 33,
|
182 |
+
">": 34,
|
183 |
+
"?": 35,
|
184 |
+
"@": 36,
|
185 |
+
"[": 37,
|
186 |
+
"\\": 38,
|
187 |
+
"]": 39,
|
188 |
+
"^": 40,
|
189 |
+
"_": 41,
|
190 |
+
"`": 42,
|
191 |
+
"a": 43,
|
192 |
+
"b": 44,
|
193 |
+
"c": 45,
|
194 |
+
"d": 46,
|
195 |
+
"e": 47,
|
196 |
+
"f": 48,
|
197 |
+
"g": 49,
|
198 |
+
"h": 50,
|
199 |
+
"i": 51,
|
200 |
+
"j": 52,
|
201 |
+
"k": 53,
|
202 |
+
"l": 54,
|
203 |
+
"m": 55,
|
204 |
+
"n": 56,
|
205 |
+
"o": 57,
|
206 |
+
"p": 58,
|
207 |
+
"q": 59,
|
208 |
+
"r": 60,
|
209 |
+
"s": 61,
|
210 |
+
"t": 62,
|
211 |
+
"u": 63,
|
212 |
+
"v": 64,
|
213 |
+
"w": 65,
|
214 |
+
"x": 66,
|
215 |
+
"y": 67,
|
216 |
+
"z": 68,
|
217 |
+
"|": 69,
|
218 |
+
"}": 70,
|
219 |
+
"~": 71,
|
220 |
+
"¡": 72,
|
221 |
+
"¢": 73,
|
222 |
+
"£": 74,
|
223 |
+
"¥": 75,
|
224 |
+
"§": 76,
|
225 |
+
"°": 77,
|
226 |
+
"±": 78,
|
227 |
+
"²": 79,
|
228 |
+
"³": 80,
|
229 |
+
"´": 81,
|
230 |
+
"µ": 82,
|
231 |
+
"·": 83,
|
232 |
+
"º": 84,
|
233 |
+
"½": 85,
|
234 |
+
"¿": 86,
|
235 |
+
"×": 87,
|
236 |
+
"ß": 88,
|
237 |
+
"æ": 89,
|
238 |
+
"ð": 90,
|
239 |
+
"ø": 91,
|
240 |
+
"þ": 92,
|
241 |
+
"đ": 93,
|
242 |
+
"ħ": 94,
|
243 |
+
"ı": 95,
|
244 |
+
"ł": 96,
|
245 |
+
"œ": 97,
|
246 |
+
"ɐ": 98,
|
247 |
+
"ɑ": 99,
|
248 |
+
"ɒ": 100,
|
249 |
+
"ɔ": 101,
|
250 |
+
"ə": 102,
|
251 |
+
"ɛ": 103,
|
252 |
+
"ɜ": 104,
|
253 |
+
"ɡ": 105,
|
254 |
+
"ɢ": 106,
|
255 |
+
"ɪ": 107,
|
256 |
+
"ɫ": 108,
|
257 |
+
"ɳ": 109,
|
258 |
+
"ɽ": 110,
|
259 |
+
"ɾ": 111,
|
260 |
+
"ʁ": 112,
|
261 |
+
"ʃ": 113,
|
262 |
+
"ʊ": 114,
|
263 |
+
"ʋ": 115,
|
264 |
+
"ʒ": 116,
|
265 |
+
"ʔ": 117,
|
266 |
+
"ʕ": 118,
|
267 |
+
"ʲ": 119,
|
268 |
+
"ʻ": 120,
|
269 |
+
"ʼ": 121,
|
270 |
+
"ʾ": 122,
|
271 |
+
"ʿ": 123,
|
272 |
+
"ˈ": 124,
|
273 |
+
"ˌ": 125,
|
274 |
+
"ː": 126,
|
275 |
+
"α": 127,
|
276 |
+
"β": 128,
|
277 |
+
"γ": 129,
|
278 |
+
"δ": 130,
|
279 |
+
"ε": 131,
|
280 |
+
"η": 132,
|
281 |
+
"θ": 133,
|
282 |
+
"ι": 134,
|
283 |
+
"κ": 135,
|
284 |
+
"λ": 136,
|
285 |
+
"μ": 137,
|
286 |
+
"��": 138,
|
287 |
+
"ξ": 139,
|
288 |
+
"ο": 140,
|
289 |
+
"π": 141,
|
290 |
+
"ρ": 142,
|
291 |
+
"ς": 143,
|
292 |
+
"σ": 144,
|
293 |
+
"τ": 145,
|
294 |
+
"υ": 146,
|
295 |
+
"φ": 147,
|
296 |
+
"χ": 148,
|
297 |
+
"ψ": 149,
|
298 |
+
"ω": 150,
|
299 |
+
"а": 151,
|
300 |
+
"б": 152,
|
301 |
+
"в": 153,
|
302 |
+
"г": 154,
|
303 |
+
"д": 155,
|
304 |
+
"е": 156,
|
305 |
+
"ж": 157,
|
306 |
+
"з": 158,
|
307 |
+
"и": 159,
|
308 |
+
"к": 160,
|
309 |
+
"л": 161,
|
310 |
+
"м": 162,
|
311 |
+
"н": 163,
|
312 |
+
"о": 164,
|
313 |
+
"п": 165,
|
314 |
+
"р": 166,
|
315 |
+
"с": 167,
|
316 |
+
"т": 168,
|
317 |
+
"у": 169,
|
318 |
+
"х": 170,
|
319 |
+
"ц": 171,
|
320 |
+
"ш": 172,
|
321 |
+
"ъ": 173,
|
322 |
+
"ы": 174,
|
323 |
+
"ь": 175,
|
324 |
+
"ю": 176,
|
325 |
+
"я": 177,
|
326 |
+
"є": 178,
|
327 |
+
"א": 179,
|
328 |
+
"ב": 180,
|
329 |
+
"ג": 181,
|
330 |
+
"ה": 182,
|
331 |
+
"ו": 183,
|
332 |
+
"ז": 184,
|
333 |
+
"ח": 185,
|
334 |
+
"י": 186,
|
335 |
+
"ל": 187,
|
336 |
+
"ם": 188,
|
337 |
+
"מ": 189,
|
338 |
+
"ן": 190,
|
339 |
+
"נ": 191,
|
340 |
+
"ס": 192,
|
341 |
+
"ף": 193,
|
342 |
+
"פ": 194,
|
343 |
+
"צ": 195,
|
344 |
+
"ר": 196,
|
345 |
+
"ש": 197,
|
346 |
+
"ת": 198,
|
347 |
+
"ء": 199,
|
348 |
+
"ا": 200,
|
349 |
+
"ب": 201,
|
350 |
+
"ة": 202,
|
351 |
+
"ت": 203,
|
352 |
+
"ث": 204,
|
353 |
+
"ج": 205,
|
354 |
+
"ح": 206,
|
355 |
+
"خ": 207,
|
356 |
+
"د": 208,
|
357 |
+
"ذ": 209,
|
358 |
+
"ر": 210,
|
359 |
+
"س": 211,
|
360 |
+
"ش": 212,
|
361 |
+
"ص": 213,
|
362 |
+
"ع": 214,
|
363 |
+
"ف": 215,
|
364 |
+
"ق": 216,
|
365 |
+
"ك": 217,
|
366 |
+
"ل": 218,
|
367 |
+
"م": 219,
|
368 |
+
"ن": 220,
|
369 |
+
"ه": 221,
|
370 |
+
"و": 222,
|
371 |
+
"ي": 223,
|
372 |
+
"ܐ": 224,
|
373 |
+
"ܕ": 225,
|
374 |
+
"ܗ": 226,
|
375 |
+
"ܝ": 227,
|
376 |
+
"ܠ": 228,
|
377 |
+
"ܢ": 229,
|
378 |
+
"ܬ": 230,
|
379 |
+
"अ": 231,
|
380 |
+
"ई": 232,
|
381 |
+
"क": 233,
|
382 |
+
"ग": 234,
|
383 |
+
"ण": 235,
|
384 |
+
"त": 236,
|
385 |
+
"द": 237,
|
386 |
+
"न": 238,
|
387 |
+
"प": 239,
|
388 |
+
"ब": 240,
|
389 |
+
"म": 241,
|
390 |
+
"य": 242,
|
391 |
+
"र": 243,
|
392 |
+
"ल": 244,
|
393 |
+
"व": 245,
|
394 |
+
"स": 246,
|
395 |
+
"ह": 247,
|
396 |
+
"ा": 248,
|
397 |
+
"ि": 249,
|
398 |
+
"আ": 250,
|
399 |
+
"ল": 251,
|
400 |
+
"হ": 252,
|
401 |
+
"া": 253,
|
402 |
+
"ਅ": 254,
|
403 |
+
"ਲ": 255,
|
404 |
+
"ਹ": 256,
|
405 |
+
"ਾ": 257,
|
406 |
+
"അ": 258,
|
407 |
+
"ള": 259,
|
408 |
+
"ഹ": 260,
|
409 |
+
"ാ": 261,
|
410 |
+
"ก": 262,
|
411 |
+
"ค": 263,
|
412 |
+
"ง": 264,
|
413 |
+
"ช": 265,
|
414 |
+
"ซ": 266,
|
415 |
+
"ญ": 267,
|
416 |
+
"ฐ": 268,
|
417 |
+
"ณ": 269,
|
418 |
+
"ด": 270,
|
419 |
+
"ต": 271,
|
420 |
+
"น": 272,
|
421 |
+
"บ": 273,
|
422 |
+
"ป": 274,
|
423 |
+
"พ": 275,
|
424 |
+
"ภ": 276,
|
425 |
+
"ม": 277,
|
426 |
+
"ย": 278,
|
427 |
+
"ร": 279,
|
428 |
+
"ล": 280,
|
429 |
+
"ว": 281,
|
430 |
+
"ศ": 282,
|
431 |
+
"ษ": 283,
|
432 |
+
"ส": 284,
|
433 |
+
"ห": 285,
|
434 |
+
"อ": 286,
|
435 |
+
"ฮ": 287,
|
436 |
+
"ะ": 288,
|
437 |
+
"า": 289,
|
438 |
+
"เ": 290,
|
439 |
+
"แ": 291,
|
440 |
+
"ไ": 292,
|
441 |
+
"ა": 293,
|
442 |
+
"ბ": 294,
|
443 |
+
"გ": 295,
|
444 |
+
"დ": 296,
|
445 |
+
"ე": 297,
|
446 |
+
"ვ": 298,
|
447 |
+
"ზ": 299,
|
448 |
+
"თ": 300,
|
449 |
+
"ი": 301,
|
450 |
+
"კ": 302,
|
451 |
+
"ლ": 303,
|
452 |
+
"მ": 304,
|
453 |
+
"ნ": 305,
|
454 |
+
"ო": 306,
|
455 |
+
"პ": 307,
|
456 |
+
"ჟ": 308,
|
457 |
+
"რ": 309,
|
458 |
+
"ს": 310,
|
459 |
+
"ტ": 311,
|
460 |
+
"უ": 312,
|
461 |
+
"ფ": 313,
|
462 |
+
"ქ": 314,
|
463 |
+
"ღ": 315,
|
464 |
+
"ყ": 316,
|
465 |
+
"შ": 317,
|
466 |
+
"ჩ": 318,
|
467 |
+
"ც": 319,
|
468 |
+
"ძ": 320,
|
469 |
+
"წ": 321,
|
470 |
+
"ჭ": 322,
|
471 |
+
"ხ": 323,
|
472 |
+
"ჯ": 324,
|
473 |
+
"ჰ": 325,
|
474 |
+
"ჱ": 326,
|
475 |
+
"ჲ": 327,
|
476 |
+
"ჳ": 328,
|
477 |
+
"ჴ": 329,
|
478 |
+
"ჵ": 330,
|
479 |
+
"ჶ": 331,
|
480 |
+
"ჷ": 332,
|
481 |
+
"ჸ": 333,
|
482 |
+
"ჹ": 334,
|
483 |
+
"ჺ": 335,
|
484 |
+
"჻": 336,
|
485 |
+
"ᄃ": 337,
|
486 |
+
"ᄅ": 338,
|
487 |
+
"ᄇ": 339,
|
488 |
+
"ᄋ": 340,
|
489 |
+
"ᄌ": 341,
|
490 |
+
"ᅡ": 342,
|
491 |
+
"ᅢ": 343,
|
492 |
+
"ᅦ": 344,
|
493 |
+
"ᅧ": 345,
|
494 |
+
"ᅩ": 346,
|
495 |
+
"ᅮ": 347,
|
496 |
+
"ᅵ": 348,
|
497 |
+
"ᆨ": 349,
|
498 |
+
"ᆫ": 350,
|
499 |
+
"ᆯ": 351,
|
500 |
+
"ᆸ": 352,
|
501 |
+
"ᆼ": 353,
|
502 |
+
"ᵻ": 354,
|
503 |
+
"‐": 355,
|
504 |
+
"‑": 356,
|
505 |
+
"–": 357,
|
506 |
+
"—": 358,
|
507 |
+
"―": 359,
|
508 |
+
"‘": 360,
|
509 |
+
"’": 361,
|
510 |
+
"“": 362,
|
511 |
+
"”": 363,
|
512 |
+
"„": 364,
|
513 |
+
"†": 365,
|
514 |
+
"‡": 366,
|
515 |
+
"•": 367,
|
516 |
+
"…": 368,
|
517 |
+
"′": 369,
|
518 |
+
"″": 370,
|
519 |
+
"⁄": 371,
|
520 |
+
"₣": 372,
|
521 |
+
"₤": 373,
|
522 |
+
"€": 374,
|
523 |
+
"₹": 375,
|
524 |
+
"⅓": 376,
|
525 |
+
"⅔": 377,
|
526 |
+
"→": 378,
|
527 |
+
"−": 379,
|
528 |
+
"≡": 380,
|
529 |
+
"≤": 381,
|
530 |
+
"①": 382,
|
531 |
+
"☉": 383,
|
532 |
+
"☫": 384,
|
533 |
+
"♀": 385,
|
534 |
+
"♭": 386,
|
535 |
+
"♯": 387,
|
536 |
+
"⚳": 388,
|
537 |
+
"ⴀ": 389,
|
538 |
+
"ⴂ": 390,
|
539 |
+
"ⴃ": 391,
|
540 |
+
"ⴈ": 392,
|
541 |
+
"ⴌ": 393,
|
542 |
+
"ⴕ": 394,
|
543 |
+
"ⴟ": 395,
|
544 |
+
"〈": 396,
|
545 |
+
"〉": 397,
|
546 |
+
"〜": 398,
|
547 |
+
"あ": 399,
|
548 |
+
"い": 400,
|
549 |
+
"う": 401,
|
550 |
+
"お": 402,
|
551 |
+
"か": 403,
|
552 |
+
"き": 404,
|
553 |
+
"く": 405,
|
554 |
+
"け": 406,
|
555 |
+
"こ": 407,
|
556 |
+
"さ": 408,
|
557 |
+
"し": 409,
|
558 |
+
"す": 410,
|
559 |
+
"せ": 411,
|
560 |
+
"た": 412,
|
561 |
+
"ち": 413,
|
562 |
+
"っ": 414,
|
563 |
+
"つ": 415,
|
564 |
+
"と": 416,
|
565 |
+
"な": 417,
|
566 |
+
"に": 418,
|
567 |
+
"の": 419,
|
568 |
+
"は": 420,
|
569 |
+
"ひ": 421,
|
570 |
+
"ふ": 422,
|
571 |
+
"ほ": 423,
|
572 |
+
"ま": 424,
|
573 |
+
"み": 425,
|
574 |
+
"め": 426,
|
575 |
+
"も": 427,
|
576 |
+
"ゃ": 428,
|
577 |
+
"ゆ": 429,
|
578 |
+
"ょ": 430,
|
579 |
+
"ら": 431,
|
580 |
+
"り": 432,
|
581 |
+
"る": 433,
|
582 |
+
"れ": 434,
|
583 |
+
"わ": 435,
|
584 |
+
"を": 436,
|
585 |
+
"ん": 437,
|
586 |
+
"ァ": 438,
|
587 |
+
"ア": 439,
|
588 |
+
"ィ": 440,
|
589 |
+
"イ": 441,
|
590 |
+
"ゥ": 442,
|
591 |
+
"ウ": 443,
|
592 |
+
"ェ": 444,
|
593 |
+
"エ": 445,
|
594 |
+
"ォ": 446,
|
595 |
+
"オ": 447,
|
596 |
+
"カ": 448,
|
597 |
+
"キ": 449,
|
598 |
+
"ク": 450,
|
599 |
+
"ケ": 451,
|
600 |
+
"コ": 452,
|
601 |
+
"サ": 453,
|
602 |
+
"シ": 454,
|
603 |
+
"ス": 455,
|
604 |
+
"セ": 456,
|
605 |
+
"タ": 457,
|
606 |
+
"チ": 458,
|
607 |
+
"ッ": 459,
|
608 |
+
"ツ": 460,
|
609 |
+
"テ": 461,
|
610 |
+
"ト": 462,
|
611 |
+
"ナ": 463,
|
612 |
+
"ニ": 464,
|
613 |
+
"ネ": 465,
|
614 |
+
"ノ": 466,
|
615 |
+
"ハ": 467,
|
616 |
+
"フ": 468,
|
617 |
+
"ヘ": 469,
|
618 |
+
"マ": 470,
|
619 |
+
"ミ": 471,
|
620 |
+
"ム": 472,
|
621 |
+
"モ": 473,
|
622 |
+
"ャ": 474,
|
623 |
+
"ュ": 475,
|
624 |
+
"ョ": 476,
|
625 |
+
"ラ": 477,
|
626 |
+
"リ": 478,
|
627 |
+
"ル": 479,
|
628 |
+
"レ": 480,
|
629 |
+
"ロ": 481,
|
630 |
+
"ン": 482,
|
631 |
+
"・": 483,
|
632 |
+
"ー": 484,
|
633 |
+
"一": 485,
|
634 |
+
"七": 486,
|
635 |
+
"下": 487,
|
636 |
+
"世": 488,
|
637 |
+
"丙": 489,
|
638 |
+
"中": 490,
|
639 |
+
"主": 491,
|
640 |
+
"乃": 492,
|
641 |
+
"之": 493,
|
642 |
+
"乙": 494,
|
643 |
+
"九": 495,
|
644 |
+
"二": 496,
|
645 |
+
"云": 497,
|
646 |
+
"人": 498,
|
647 |
+
"今": 499,
|
648 |
+
"付": 500,
|
649 |
+
"作": 501,
|
650 |
+
"侗": 502,
|
651 |
+
"依": 503,
|
652 |
+
"信": 504,
|
653 |
+
"傳": 505,
|
654 |
+
"儚": 506,
|
655 |
+
"充": 507,
|
656 |
+
"光": 508,
|
657 |
+
"全": 509,
|
658 |
+
"兵": 510,
|
659 |
+
"其": 511,
|
660 |
+
"具": 512,
|
661 |
+
"円": 513,
|
662 |
+
"再": 514,
|
663 |
+
"出": 515,
|
664 |
+
"判": 516,
|
665 |
+
"前": 517,
|
666 |
+
"剛": 518,
|
667 |
+
"劇": 519,
|
668 |
+
"劉": 520,
|
669 |
+
"動": 521,
|
670 |
+
"化": 522,
|
671 |
+
"北": 523,
|
672 |
+
"华": 524,
|
673 |
+
"厂": 525,
|
674 |
+
"去": 526,
|
675 |
+
"古": 527,
|
676 |
+
"可": 528,
|
677 |
+
"台": 529,
|
678 |
+
"史": 530,
|
679 |
+
"同": 531,
|
680 |
+
"名": 532,
|
681 |
+
"君": 533,
|
682 |
+
"吳": 534,
|
683 |
+
"周": 535,
|
684 |
+
"命": 536,
|
685 |
+
"和": 537,
|
686 |
+
"咲": 538,
|
687 |
+
"善": 539,
|
688 |
+
"四": 540,
|
689 |
+
"國": 541,
|
690 |
+
"園": 542,
|
691 |
+
"圣": 543,
|
692 |
+
"在": 544,
|
693 |
+
"坂": 545,
|
694 |
+
"堤": 546,
|
695 |
+
"場": 547,
|
696 |
+
"塘": 548,
|
697 |
+
"夕": 549,
|
698 |
+
"大": 550,
|
699 |
+
"天": 551,
|
700 |
+
"夫": 552,
|
701 |
+
"女": 553,
|
702 |
+
"妙": 554,
|
703 |
+
"姚": 555,
|
704 |
+
"子": 556,
|
705 |
+
"孟": 557,
|
706 |
+
"守": 558,
|
707 |
+
"安": 559,
|
708 |
+
"宋": 560,
|
709 |
+
"完": 561,
|
710 |
+
"宗": 562,
|
711 |
+
"宝": 563,
|
712 |
+
"宫": 564,
|
713 |
+
"寝": 565,
|
714 |
+
"寺": 566,
|
715 |
+
"小": 567,
|
716 |
+
"少": 568,
|
717 |
+
"尾": 569,
|
718 |
+
"山": 570,
|
719 |
+
"岳": 571,
|
720 |
+
"川": 572,
|
721 |
+
"州": 573,
|
722 |
+
"巳": 574,
|
723 |
+
"市": 575,
|
724 |
+
"師": 576,
|
725 |
+
"平": 577,
|
726 |
+
"广": 578,
|
727 |
+
"庆": 579,
|
728 |
+
"府": 580,
|
729 |
+
"座": 581,
|
730 |
+
"廬": 582,
|
731 |
+
"建": 583,
|
732 |
+
"式": 584,
|
733 |
+
"張": 585,
|
734 |
+
"彌": 586,
|
735 |
+
"彩": 587,
|
736 |
+
"彼": 588,
|
737 |
+
"後": 589,
|
738 |
+
"御": 590,
|
739 |
+
"德": 591,
|
740 |
+
"思": 592,
|
741 |
+
"愛": 593,
|
742 |
+
"憑": 594,
|
743 |
+
"憶": 595,
|
744 |
+
"應": 596,
|
745 |
+
"懷": 597,
|
746 |
+
"战": 598,
|
747 |
+
"戦": 599,
|
748 |
+
"扈": 600,
|
749 |
+
"技": 601,
|
750 |
+
"拉": 602,
|
751 |
+
"拳": 603,
|
752 |
+
"挑": 604,
|
753 |
+
"揺": 605,
|
754 |
+
"攻": 606,
|
755 |
+
"放": 607,
|
756 |
+
"政": 608,
|
757 |
+
"散": 609,
|
758 |
+
"斯": 610,
|
759 |
+
"方": 611,
|
760 |
+
"日": 612,
|
761 |
+
"旦": 613,
|
762 |
+
"旭": 614,
|
763 |
+
"昌": 615,
|
764 |
+
"明": 616,
|
765 |
+
"星": 617,
|
766 |
+
"春": 618,
|
767 |
+
"晋": 619,
|
768 |
+
"景": 620,
|
769 |
+
"曦": 621,
|
770 |
+
"月": 622,
|
771 |
+
"望": 623,
|
772 |
+
"未": 624,
|
773 |
+
"本": 625,
|
774 |
+
"李": 626,
|
775 |
+
"村": 627,
|
776 |
+
"杜": 628,
|
777 |
+
"束": 629,
|
778 |
+
"来": 630,
|
779 |
+
"林": 631,
|
780 |
+
"桜": 632,
|
781 |
+
"梶": 633,
|
782 |
+
"棘": 634,
|
783 |
+
"椎": 635,
|
784 |
+
"楊": 636,
|
785 |
+
"楚": 637,
|
786 |
+
"榮": 638,
|
787 |
+
"橘": 639,
|
788 |
+
"機": 640,
|
789 |
+
"正": 641,
|
790 |
+
"殻": 642,
|
791 |
+
"殿": 643,
|
792 |
+
"母": 644,
|
793 |
+
"水": 645,
|
794 |
+
"汉": 646,
|
795 |
+
"沂": 647,
|
796 |
+
"沙": 648,
|
797 |
+
"河": 649,
|
798 |
+
"泗": 650,
|
799 |
+
"波": 651,
|
800 |
+
"泣": 652,
|
801 |
+
"洪": 653,
|
802 |
+
"淹": 654,
|
803 |
+
"清": 655,
|
804 |
+
"湯": 656,
|
805 |
+
"漢": 657,
|
806 |
+
"澄": 658,
|
807 |
+
"澤": 659,
|
808 |
+
"火": 660,
|
809 |
+
"灯": 661,
|
810 |
+
"灵": 662,
|
811 |
+
"灼": 663,
|
812 |
+
"焼": 664,
|
813 |
+
"熱": 665,
|
814 |
+
"物": 666,
|
815 |
+
"狐": 667,
|
816 |
+
"狸": 668,
|
817 |
+
"玄": 669,
|
818 |
+
"王": 670,
|
819 |
+
"玩": 671,
|
820 |
+
"珂": 672,
|
821 |
+
"珙": 673,
|
822 |
+
"球": 674,
|
823 |
+
"理": 675,
|
824 |
+
"琦": 676,
|
825 |
+
"琪": 677,
|
826 |
+
"瓊": 678,
|
827 |
+
"生": 679,
|
828 |
+
"田": 680,
|
829 |
+
"畢": 681,
|
830 |
+
"番": 682,
|
831 |
+
"瘡": 683,
|
832 |
+
"白": 684,
|
833 |
+
"皮": 685,
|
834 |
+
"真": 686,
|
835 |
+
"砲": 687,
|
836 |
+
"礮": 688,
|
837 |
+
"祈": 689,
|
838 |
+
"神": 690,
|
839 |
+
"祠": 691,
|
840 |
+
"秋": 692,
|
841 |
+
"空": 693,
|
842 |
+
"立": 694,
|
843 |
+
"精": 695,
|
844 |
+
"約": 696,
|
845 |
+
"絵": 697,
|
846 |
+
"織": 698,
|
847 |
+
"義": 699,
|
848 |
+
"翠": 700,
|
849 |
+
"者": 701,
|
850 |
+
"耕": 702,
|
851 |
+
"肖": 703,
|
852 |
+
"胡": 704,
|
853 |
+
"膀": 705,
|
854 |
+
"臂": 706,
|
855 |
+
"興": 707,
|
856 |
+
"良": 708,
|
857 |
+
"花": 709,
|
858 |
+
"芳": 710,
|
859 |
+
"芽": 711,
|
860 |
+
"若": 712,
|
861 |
+
"英": 713,
|
862 |
+
"藕": 714,
|
863 |
+
"藥": 715,
|
864 |
+
"蘄": 716,
|
865 |
+
"蘇": 717,
|
866 |
+
"行": 718,
|
867 |
+
"裁": 719,
|
868 |
+
"規": 720,
|
869 |
+
"覺": 721,
|
870 |
+
"观": 722,
|
871 |
+
"解": 723,
|
872 |
+
"記": 724,
|
873 |
+
"誓": 725,
|
874 |
+
"誡": 726,
|
875 |
+
"誰": 727,
|
876 |
+
"謎": 728,
|
877 |
+
"许": 729,
|
878 |
+
"谭": 730,
|
879 |
+
"豪": 731,
|
880 |
+
"豫": 732,
|
881 |
+
"費": 733,
|
882 |
+
"贵": 734,
|
883 |
+
"赤": 735,
|
884 |
+
"趙": 736,
|
885 |
+
"足": 737,
|
886 |
+
"跡": 738,
|
887 |
+
"転": 739,
|
888 |
+
"辛": 740,
|
889 |
+
"逆": 741,
|
890 |
+
"遇": 742,
|
891 |
+
"運": 743,
|
892 |
+
"過": 744,
|
893 |
+
"遠": 745,
|
894 |
+
"選": 746,
|
895 |
+
"邦": 747,
|
896 |
+
"邱": 748,
|
897 |
+
"部": 749,
|
898 |
+
"郭": 750,
|
899 |
+
"都": 751,
|
900 |
+
"酈": 752,
|
901 |
+
"里": 753,
|
902 |
+
"野": 754,
|
903 |
+
"金": 755,
|
904 |
+
"銃": 756,
|
905 |
+
"鋼": 757,
|
906 |
+
"錄": 758,
|
907 |
+
"錡": 759,
|
908 |
+
"鍵": 760,
|
909 |
+
"鐵": 761,
|
910 |
+
"钱": 762,
|
911 |
+
"铁": 763,
|
912 |
+
"關": 764,
|
913 |
+
"防": 765,
|
914 |
+
"阿": 766,
|
915 |
+
"陈": 767,
|
916 |
+
"陳": 768,
|
917 |
+
"陽": 769,
|
918 |
+
"隊": 770,
|
919 |
+
"階": 771,
|
920 |
+
"集": 772,
|
921 |
+
"雪": 773,
|
922 |
+
"雲": 774,
|
923 |
+
"霖": 775,
|
924 |
+
"霹": 776,
|
925 |
+
"靂": 777,
|
926 |
+
"韓": 778,
|
927 |
+
"願": 779,
|
928 |
+
"顯": 780,
|
929 |
+
"颜": 781,
|
930 |
+
"马": 782,
|
931 |
+
"高": 783,
|
932 |
+
"龍": 784,
|
933 |
+
"ﷲ": 785,
|
934 |
+
"ﻋ": 786,
|
935 |
+
"/": 787,
|
936 |
+
"3": 788,
|
937 |
+
"~": 789,
|
938 |
+
"##i": 790,
|
939 |
+
"##y": 791,
|
940 |
+
"##o": 792,
|
941 |
+
"##r": 793,
|
942 |
+
"##g": 794,
|
943 |
+
"##a": 795,
|
944 |
+
"##w": 796,
|
945 |
+
"##l": 797,
|
946 |
+
"##b": 798,
|
947 |
+
"##z": 799,
|
948 |
+
"##t": 800,
|
949 |
+
"##n": 801,
|
950 |
+
"##c": 802,
|
951 |
+
"##h": 803,
|
952 |
+
"##s": 804,
|
953 |
+
"##u": 805,
|
954 |
+
"##d": 806,
|
955 |
+
"##e": 807,
|
956 |
+
"##k": 808,
|
957 |
+
"##v": 809,
|
958 |
+
"##f": 810,
|
959 |
+
"##x": 811,
|
960 |
+
"##q": 812,
|
961 |
+
"##p": 813,
|
962 |
+
"##æ": 814,
|
963 |
+
"##0": 815,
|
964 |
+
"##5": 816,
|
965 |
+
"##m": 817,
|
966 |
+
"##8": 818,
|
967 |
+
"##4": 819,
|
968 |
+
"##س": 820,
|
969 |
+
"##ت": 821,
|
970 |
+
"##ا": 822,
|
971 |
+
"##ن": 823,
|
972 |
+
"##6": 824,
|
973 |
+
"##1": 825,
|
974 |
+
"##7": 826,
|
975 |
+
"##j": 827,
|
976 |
+
"##つ": 828,
|
977 |
+
"##う": 829,
|
978 |
+
"##2": 830,
|
979 |
+
"##9": 831,
|
980 |
+
"##3": 832,
|
981 |
+
"##ø": 833,
|
982 |
+
"##ล": 834,
|
983 |
+
"##ว": 835,
|
984 |
+
"##ง": 836,
|
985 |
+
"##พ": 837,
|
986 |
+
"##ไ": 838,
|
987 |
+
"##ช": 839,
|
988 |
+
"##ย": 840,
|
989 |
+
"##า": 841,
|
990 |
+
"##ร": 842,
|
991 |
+
"##თ": 843,
|
992 |
+
"##ა": 844,
|
993 |
+
"##ვ": 845,
|
994 |
+
"##რ": 846,
|
995 |
+
"##ი": 847,
|
996 |
+
"##ള": 848,
|
997 |
+
"##あ": 849,
|
998 |
+
"##ん": 850,
|
999 |
+
"##α": 851,
|
1000 |
+
"##ν": 852,
|
1001 |
+
"##τ": 853,
|
1002 |
+
"##ο": 854,
|
1003 |
+
"##κ": 855,
|
1004 |
+
"##ρ": 856,
|
1005 |
+
"##ω": 857,
|
1006 |
+
"##ς": 858,
|
1007 |
+
"##の": 859,
|
1008 |
+
"##な": 860,
|
1009 |
+
"##ら": 861,
|
1010 |
+
"##ð": 862,
|
1011 |
+
"##œ": 863,
|
1012 |
+
"##ɛ": 864,
|
1013 |
+
"##ł": 865,
|
1014 |
+
"##η": 866,
|
1015 |
+
"##μ": 867,
|
1016 |
+
"##ซ": 868,
|
1017 |
+
"##ル": 869,
|
1018 |
+
"##シ": 870,
|
1019 |
+
"##ア": 871,
|
1020 |
+
"##リ": 872,
|
1021 |
+
"##ス": 873,
|
1022 |
+
"##ʔ": 874,
|
1023 |
+
"##ल": 875,
|
1024 |
+
"##ᄇ": 876,
|
1025 |
+
"##ᅮ": 877,
|
1026 |
+
"##ᄃ": 878,
|
1027 |
+
"##ᅢ": 879,
|
1028 |
+
"##β": 880,
|
1029 |
+
"##ß": 881,
|
1030 |
+
"##か": 882,
|
1031 |
+
"##た": 883,
|
1032 |
+
"##ə": 884,
|
1033 |
+
"##ʻ": 885,
|
1034 |
+
"##ι": 886,
|
1035 |
+
"##χ": 887,
|
1036 |
+
"##о": 888,
|
1037 |
+
"##л": 889,
|
1038 |
+
"##с": 890,
|
1039 |
+
"##а": 891,
|
1040 |
+
"##т": 892,
|
1041 |
+
"##ы": 893,
|
1042 |
+
"##и": 894,
|
1043 |
+
"##в": 895,
|
1044 |
+
"##к": 896,
|
1045 |
+
"##з": 897,
|
1046 |
+
"##ッ": 898,
|
1047 |
+
"##ク": 899,
|
1048 |
+
"##マ": 900,
|
1049 |
+
"##ン": 901,
|
1050 |
+
"##გ": 902,
|
1051 |
+
"##ლ": 903,
|
1052 |
+
"##ო": 904,
|
1053 |
+
"##ნ": 905,
|
1054 |
+
"##ː": 906,
|
1055 |
+
"##ל": 907,
|
1056 |
+
"##ה": 908,
|
1057 |
+
"##א": 909,
|
1058 |
+
"##く": 910,
|
1059 |
+
"##み": 911,
|
1060 |
+
"##ε": 912,
|
1061 |
+
"##ξ": 913,
|
1062 |
+
"##ল": 914,
|
1063 |
+
"##ˈ": 915,
|
1064 |
+
"##ɡ": 916,
|
1065 |
+
"##ɑ": 917,
|
1066 |
+
"##ɒ": 918,
|
1067 |
+
"##し": 919,
|
1068 |
+
"##す": 920,
|
1069 |
+
"##き": 921,
|
1070 |
+
"##ひ": 922,
|
1071 |
+
"##と": 923,
|
1072 |
+
"##đ": 924,
|
1073 |
+
"##ъ": 925,
|
1074 |
+
"##н": 926,
|
1075 |
+
"##е": 927,
|
1076 |
+
"##י": 928,
|
1077 |
+
"##פ": 929,
|
1078 |
+
"##イ": 930,
|
1079 |
+
"##λ": 931,
|
1080 |
+
"##ق": 932,
|
1081 |
+
"##ع": 933,
|
1082 |
+
"##د": 934,
|
1083 |
+
"##ᅡ": 935,
|
1084 |
+
"##ᆯ": 936,
|
1085 |
+
"##ᄅ": 937,
|
1086 |
+
"##ɪ": 938,
|
1087 |
+
"##ค": 939,
|
1088 |
+
"##ต": 940,
|
1089 |
+
"##व": 941,
|
1090 |
+
"##��": 942,
|
1091 |
+
"##द": 943,
|
1092 |
+
"##は": 944,
|
1093 |
+
"##り": 945,
|
1094 |
+
"##レ": 946,
|
1095 |
+
"##ー": 947,
|
1096 |
+
"##ツ": 948,
|
1097 |
+
"##ي": 949,
|
1098 |
+
"##ش": 950,
|
1099 |
+
"##و": 951,
|
1100 |
+
"##م": 952,
|
1101 |
+
"##º": 953,
|
1102 |
+
"##ਲ": 954,
|
1103 |
+
"##ਾ": 955,
|
1104 |
+
"##ਹ": 956,
|
1105 |
+
"##д": 957,
|
1106 |
+
"##р": 958,
|
1107 |
+
"##ل": 959,
|
1108 |
+
"##ب": 960,
|
1109 |
+
"##い": 961,
|
1110 |
+
"##ち": 962,
|
1111 |
+
"##ゃ": 963,
|
1112 |
+
"##ʒ": 964,
|
1113 |
+
"##ʃ": 965,
|
1114 |
+
"##ɔ": 966,
|
1115 |
+
"##ह": 967,
|
1116 |
+
"##ニ": 968,
|
1117 |
+
"##ウ": 969,
|
1118 |
+
"##ァ": 970,
|
1119 |
+
"##キ": 971,
|
1120 |
+
"##ュ": 972,
|
1121 |
+
"##3": 973,
|
1122 |
+
"##ხ": 974,
|
1123 |
+
"##ს": 975,
|
1124 |
+
"##お": 976,
|
1125 |
+
"##タ": 977,
|
1126 |
+
"##ാ": 978,
|
1127 |
+
"##ഹ": 979,
|
1128 |
+
"##ɳ": 980,
|
1129 |
+
"##ま": 981,
|
1130 |
+
"##る": 982,
|
1131 |
+
"##ะ": 983,
|
1132 |
+
"##อ": 984,
|
1133 |
+
"##น": 985,
|
1134 |
+
"##ן": 986,
|
1135 |
+
"##я": 987,
|
1136 |
+
"##แ": 988,
|
1137 |
+
"##ก": 989,
|
1138 |
+
"##ɾ": 990,
|
1139 |
+
"##ʲ": 991,
|
1140 |
+
"##フ": 992,
|
1141 |
+
"##უ": 993,
|
1142 |
+
"##ภ": 994,
|
1143 |
+
"##ด": 995,
|
1144 |
+
"##ב": 996,
|
1145 |
+
"##ת": 997,
|
1146 |
+
"##خ": 998,
|
1147 |
+
"##ラ": 999,
|
1148 |
+
"##れ": 1000,
|
1149 |
+
"##ण": 1001,
|
1150 |
+
"##स": 1002,
|
1151 |
+
"##न": 1003,
|
1152 |
+
"##ه": 1004,
|
1153 |
+
"##ف": 1005,
|
1154 |
+
"##ر": 1006,
|
1155 |
+
"##エ": 1007,
|
1156 |
+
"##テ": 1008,
|
1157 |
+
"##ษ": 1009,
|
1158 |
+
"##ฐ": 1010,
|
1159 |
+
"##ィ": 1011,
|
1160 |
+
"##क": 1012,
|
1161 |
+
"##ノ": 1013,
|
1162 |
+
"##θ": 1014,
|
1163 |
+
"##ネ": 1015,
|
1164 |
+
"##ョ": 1016,
|
1165 |
+
"##δ": 1017,
|
1166 |
+
"##ɽ": 1018,
|
1167 |
+
"##ʁ": 1019,
|
1168 |
+
"##ტ": 1020,
|
1169 |
+
"##ჱ": 1021,
|
1170 |
+
"##ェ": 1022,
|
1171 |
+
"##ハ": 1023,
|
1172 |
+
"##υ": 1024,
|
1173 |
+
"##र": 1025,
|
1174 |
+
"##х": 1026,
|
1175 |
+
"##も": 1027,
|
1176 |
+
"##っ": 1028,
|
1177 |
+
"##ょ": 1029,
|
1178 |
+
"##に": 1030,
|
1179 |
+
"##γ": 1031,
|
1180 |
+
"##ც": 1032,
|
1181 |
+
"##ე": 1033,
|
1182 |
+
"##є": 1034,
|
1183 |
+
"##м": 1035,
|
1184 |
+
"##ܕ": 1036,
|
1185 |
+
"##ܝ": 1037,
|
1186 |
+
"##ܢ": 1038,
|
1187 |
+
"##ܬ": 1039,
|
1188 |
+
"##ณ": 1040,
|
1189 |
+
"##ม": 1041,
|
1190 |
+
"##ฮ": 1042,
|
1191 |
+
"##ж": 1043,
|
1192 |
+
"##ם": 1044,
|
1193 |
+
"##ء": 1045,
|
1194 |
+
"##ʊ": 1046,
|
1195 |
+
"##ई": 1047,
|
1196 |
+
"##め": 1048,
|
1197 |
+
"##მ": 1049,
|
1198 |
+
"##ム": 1050,
|
1199 |
+
"##チ": 1051,
|
1200 |
+
"##ᵻ": 1052,
|
1201 |
+
"##ˌ": 1053,
|
1202 |
+
"##ו": 1054,
|
1203 |
+
"##ף": 1055,
|
1204 |
+
"##წ": 1056,
|
1205 |
+
"##ფ": 1057,
|
1206 |
+
"##ャ": 1058,
|
1207 |
+
"##モ": 1059,
|
1208 |
+
"##ɐ": 1060,
|
1209 |
+
"##ᅦ": 1061,
|
1210 |
+
"##ᅩ": 1062,
|
1211 |
+
"##ᆨ": 1063,
|
1212 |
+
"##ᅵ": 1064,
|
1213 |
+
"##ᆸ": 1065,
|
1214 |
+
"##ᅧ": 1066,
|
1215 |
+
"##ᆼ": 1067,
|
1216 |
+
"##ᄋ": 1068,
|
1217 |
+
"##ᆫ": 1069,
|
1218 |
+
"##わ": 1070,
|
1219 |
+
"##ı": 1071,
|
1220 |
+
"##ქ": 1072,
|
1221 |
+
"##დ": 1073,
|
1222 |
+
"##ि": 1074,
|
1223 |
+
"##ჲ": 1075,
|
1224 |
+
"##ר": 1076,
|
1225 |
+
"##セ": 1077,
|
1226 |
+
"##オ": 1078,
|
1227 |
+
"##ゆ": 1079,
|
1228 |
+
"##せ": 1080,
|
1229 |
+
"##ك": 1081,
|
1230 |
+
"##ʿ": 1082,
|
1231 |
+
"##ש": 1083,
|
1232 |
+
"##מ": 1084,
|
1233 |
+
"##צ": 1085,
|
1234 |
+
"##п": 1086,
|
1235 |
+
"##г": 1087,
|
1236 |
+
"##カ": 1088,
|
1237 |
+
"##ܠ": 1089,
|
1238 |
+
"##ܗ": 1090,
|
1239 |
+
"##ܐ": 1091,
|
1240 |
+
"##ナ": 1092,
|
1241 |
+
"##ミ": 1093,
|
1242 |
+
"##こ": 1094,
|
1243 |
+
"##を": 1095,
|
1244 |
+
"##ψ": 1096,
|
1245 |
+
"##サ": 1097,
|
1246 |
+
"##ォ": 1098,
|
1247 |
+
"##π": 1099,
|
1248 |
+
"##ト": 1100,
|
1249 |
+
"##у": 1101,
|
1250 |
+
"##ح": 1102,
|
1251 |
+
"##σ": 1103,
|
1252 |
+
"##เ": 1104,
|
1253 |
+
"##ป": 1105,
|
1254 |
+
"##ш": 1106,
|
1255 |
+
"##ゥ": 1107,
|
1256 |
+
"##ロ": 1108,
|
1257 |
+
"##া": 1109,
|
1258 |
+
"##হ": 1110,
|
1259 |
+
"##ɜ": 1111,
|
1260 |
+
"##ة": 1112,
|
1261 |
+
"##ص": 1113,
|
1262 |
+
"##ס": 1114,
|
1263 |
+
"##ث": 1115,
|
1264 |
+
"##ჳ": 1116,
|
1265 |
+
"##נ": 1117,
|
1266 |
+
"##ذ": 1118,
|
1267 |
+
"##ग": 1119,
|
1268 |
+
"##ɫ": 1120,
|
1269 |
+
"##ц": 1121,
|
1270 |
+
"##ь": 1122,
|
1271 |
+
"##ю": 1123
|
1272 |
+
}
|
1273 |
+
}
|
1274 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_basic_tokenize": true,
|
4 |
+
"do_lower_case": true,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 512,
|
7 |
+
"name_or_path": "temp/dummy/bert/processors",
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"special_tokens_map_file": null,
|
12 |
+
"strip_accents": null,
|
13 |
+
"tokenize_chinese_chars": true,
|
14 |
+
"tokenizer_class": "BertTokenizer",
|
15 |
+
"unk_token": "[UNK]"
|
16 |
+
}
|
vocab.txt
ADDED
@@ -0,0 +1,1124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[PAD]
|
2 |
+
[UNK]
|
3 |
+
[CLS]
|
4 |
+
[SEP]
|
5 |
+
[MASK]
|
6 |
+
!
|
7 |
+
"
|
8 |
+
#
|
9 |
+
$
|
10 |
+
%
|
11 |
+
&
|
12 |
+
'
|
13 |
+
(
|
14 |
+
)
|
15 |
+
*
|
16 |
+
+
|
17 |
+
,
|
18 |
+
-
|
19 |
+
.
|
20 |
+
/
|
21 |
+
0
|
22 |
+
1
|
23 |
+
2
|
24 |
+
3
|
25 |
+
4
|
26 |
+
5
|
27 |
+
6
|
28 |
+
7
|
29 |
+
8
|
30 |
+
9
|
31 |
+
:
|
32 |
+
;
|
33 |
+
<
|
34 |
+
=
|
35 |
+
>
|
36 |
+
?
|
37 |
+
@
|
38 |
+
[
|
39 |
+
\
|
40 |
+
]
|
41 |
+
^
|
42 |
+
_
|
43 |
+
`
|
44 |
+
a
|
45 |
+
b
|
46 |
+
c
|
47 |
+
d
|
48 |
+
e
|
49 |
+
f
|
50 |
+
g
|
51 |
+
h
|
52 |
+
i
|
53 |
+
j
|
54 |
+
k
|
55 |
+
l
|
56 |
+
m
|
57 |
+
n
|
58 |
+
o
|
59 |
+
p
|
60 |
+
q
|
61 |
+
r
|
62 |
+
s
|
63 |
+
t
|
64 |
+
u
|
65 |
+
v
|
66 |
+
w
|
67 |
+
x
|
68 |
+
y
|
69 |
+
z
|
70 |
+
|
|
71 |
+
}
|
72 |
+
~
|
73 |
+
¡
|
74 |
+
¢
|
75 |
+
£
|
76 |
+
¥
|
77 |
+
§
|
78 |
+
°
|
79 |
+
±
|
80 |
+
²
|
81 |
+
³
|
82 |
+
´
|
83 |
+
µ
|
84 |
+
·
|
85 |
+
º
|
86 |
+
½
|
87 |
+
¿
|
88 |
+
×
|
89 |
+
ß
|
90 |
+
æ
|
91 |
+
ð
|
92 |
+
ø
|
93 |
+
þ
|
94 |
+
đ
|
95 |
+
ħ
|
96 |
+
ı
|
97 |
+
ł
|
98 |
+
œ
|
99 |
+
ɐ
|
100 |
+
ɑ
|
101 |
+
ɒ
|
102 |
+
ɔ
|
103 |
+
ə
|
104 |
+
ɛ
|
105 |
+
ɜ
|
106 |
+
ɡ
|
107 |
+
ɢ
|
108 |
+
ɪ
|
109 |
+
ɫ
|
110 |
+
ɳ
|
111 |
+
ɽ
|
112 |
+
ɾ
|
113 |
+
ʁ
|
114 |
+
ʃ
|
115 |
+
ʊ
|
116 |
+
ʋ
|
117 |
+
ʒ
|
118 |
+
ʔ
|
119 |
+
ʕ
|
120 |
+
ʲ
|
121 |
+
ʻ
|
122 |
+
ʼ
|
123 |
+
ʾ
|
124 |
+
ʿ
|
125 |
+
ˈ
|
126 |
+
ˌ
|
127 |
+
ː
|
128 |
+
α
|
129 |
+
β
|
130 |
+
γ
|
131 |
+
δ
|
132 |
+
ε
|
133 |
+
η
|
134 |
+
θ
|
135 |
+
ι
|
136 |
+
κ
|
137 |
+
λ
|
138 |
+
μ
|
139 |
+
ν
|
140 |
+
ξ
|
141 |
+
ο
|
142 |
+
π
|
143 |
+
ρ
|
144 |
+
ς
|
145 |
+
σ
|
146 |
+
τ
|
147 |
+
υ
|
148 |
+
φ
|
149 |
+
χ
|
150 |
+
ψ
|
151 |
+
ω
|
152 |
+
а
|
153 |
+
б
|
154 |
+
в
|
155 |
+
г
|
156 |
+
д
|
157 |
+
е
|
158 |
+
ж
|
159 |
+
з
|
160 |
+
и
|
161 |
+
к
|
162 |
+
л
|
163 |
+
м
|
164 |
+
н
|
165 |
+
о
|
166 |
+
п
|
167 |
+
р
|
168 |
+
с
|
169 |
+
т
|
170 |
+
у
|
171 |
+
х
|
172 |
+
ц
|
173 |
+
ш
|
174 |
+
ъ
|
175 |
+
ы
|
176 |
+
ь
|
177 |
+
ю
|
178 |
+
я
|
179 |
+
є
|
180 |
+
א
|
181 |
+
ב
|
182 |
+
ג
|
183 |
+
ה
|
184 |
+
ו
|
185 |
+
ז
|
186 |
+
ח
|
187 |
+
י
|
188 |
+
ל
|
189 |
+
ם
|
190 |
+
מ
|
191 |
+
ן
|
192 |
+
נ
|
193 |
+
ס
|
194 |
+
ף
|
195 |
+
פ
|
196 |
+
צ
|
197 |
+
ר
|
198 |
+
ש
|
199 |
+
ת
|
200 |
+
ء
|
201 |
+
ا
|
202 |
+
ب
|
203 |
+
ة
|
204 |
+
ت
|
205 |
+
ث
|
206 |
+
ج
|
207 |
+
ح
|
208 |
+
خ
|
209 |
+
د
|
210 |
+
ذ
|
211 |
+
ر
|
212 |
+
س
|
213 |
+
ش
|
214 |
+
ص
|
215 |
+
ع
|
216 |
+
ف
|
217 |
+
ق
|
218 |
+
ك
|
219 |
+
ل
|
220 |
+
م
|
221 |
+
ن
|
222 |
+
ه
|
223 |
+
و
|
224 |
+
ي
|
225 |
+
ܐ
|
226 |
+
ܕ
|
227 |
+
ܗ
|
228 |
+
ܝ
|
229 |
+
ܠ
|
230 |
+
ܢ
|
231 |
+
ܬ
|
232 |
+
अ
|
233 |
+
ई
|
234 |
+
क
|
235 |
+
ग
|
236 |
+
ण
|
237 |
+
त
|
238 |
+
द
|
239 |
+
न
|
240 |
+
प
|
241 |
+
ब
|
242 |
+
म
|
243 |
+
य
|
244 |
+
र
|
245 |
+
ल
|
246 |
+
व
|
247 |
+
स
|
248 |
+
ह
|
249 |
+
ा
|
250 |
+
ि
|
251 |
+
আ
|
252 |
+
ল
|
253 |
+
হ
|
254 |
+
া
|
255 |
+
ਅ
|
256 |
+
ਲ
|
257 |
+
ਹ
|
258 |
+
ਾ
|
259 |
+
അ
|
260 |
+
ള
|
261 |
+
ഹ
|
262 |
+
ാ
|
263 |
+
ก
|
264 |
+
ค
|
265 |
+
ง
|
266 |
+
ช
|
267 |
+
ซ
|
268 |
+
ญ
|
269 |
+
ฐ
|
270 |
+
ณ
|
271 |
+
ด
|
272 |
+
ต
|
273 |
+
น
|
274 |
+
บ
|
275 |
+
ป
|
276 |
+
พ
|
277 |
+
ภ
|
278 |
+
ม
|
279 |
+
ย
|
280 |
+
ร
|
281 |
+
ล
|
282 |
+
ว
|
283 |
+
ศ
|
284 |
+
ษ
|
285 |
+
ส
|
286 |
+
ห
|
287 |
+
อ
|
288 |
+
ฮ
|
289 |
+
ะ
|
290 |
+
า
|
291 |
+
เ
|
292 |
+
แ
|
293 |
+
ไ
|
294 |
+
ა
|
295 |
+
ბ
|
296 |
+
გ
|
297 |
+
დ
|
298 |
+
ე
|
299 |
+
ვ
|
300 |
+
ზ
|
301 |
+
თ
|
302 |
+
ი
|
303 |
+
კ
|
304 |
+
ლ
|
305 |
+
მ
|
306 |
+
ნ
|
307 |
+
ო
|
308 |
+
პ
|
309 |
+
ჟ
|
310 |
+
რ
|
311 |
+
ს
|
312 |
+
ტ
|
313 |
+
უ
|
314 |
+
ფ
|
315 |
+
ქ
|
316 |
+
ღ
|
317 |
+
ყ
|
318 |
+
შ
|
319 |
+
ჩ
|
320 |
+
ც
|
321 |
+
ძ
|
322 |
+
წ
|
323 |
+
ჭ
|
324 |
+
ხ
|
325 |
+
ჯ
|
326 |
+
ჰ
|
327 |
+
ჱ
|
328 |
+
ჲ
|
329 |
+
ჳ
|
330 |
+
ჴ
|
331 |
+
ჵ
|
332 |
+
ჶ
|
333 |
+
ჷ
|
334 |
+
ჸ
|
335 |
+
ჹ
|
336 |
+
ჺ
|
337 |
+
჻
|
338 |
+
ᄃ
|
339 |
+
ᄅ
|
340 |
+
ᄇ
|
341 |
+
ᄋ
|
342 |
+
ᄌ
|
343 |
+
ᅡ
|
344 |
+
ᅢ
|
345 |
+
ᅦ
|
346 |
+
ᅧ
|
347 |
+
ᅩ
|
348 |
+
ᅮ
|
349 |
+
ᅵ
|
350 |
+
ᆨ
|
351 |
+
ᆫ
|
352 |
+
ᆯ
|
353 |
+
ᆸ
|
354 |
+
ᆼ
|
355 |
+
ᵻ
|
356 |
+
‐
|
357 |
+
‑
|
358 |
+
–
|
359 |
+
—
|
360 |
+
―
|
361 |
+
‘
|
362 |
+
’
|
363 |
+
“
|
364 |
+
”
|
365 |
+
„
|
366 |
+
†
|
367 |
+
‡
|
368 |
+
•
|
369 |
+
…
|
370 |
+
′
|
371 |
+
″
|
372 |
+
⁄
|
373 |
+
₣
|
374 |
+
₤
|
375 |
+
€
|
376 |
+
₹
|
377 |
+
⅓
|
378 |
+
⅔
|
379 |
+
→
|
380 |
+
−
|
381 |
+
≡
|
382 |
+
≤
|
383 |
+
①
|
384 |
+
☉
|
385 |
+
☫
|
386 |
+
♀
|
387 |
+
♭
|
388 |
+
♯
|
389 |
+
⚳
|
390 |
+
ⴀ
|
391 |
+
ⴂ
|
392 |
+
ⴃ
|
393 |
+
ⴈ
|
394 |
+
ⴌ
|
395 |
+
ⴕ
|
396 |
+
ⴟ
|
397 |
+
〈
|
398 |
+
〉
|
399 |
+
〜
|
400 |
+
あ
|
401 |
+
い
|
402 |
+
う
|
403 |
+
お
|
404 |
+
か
|
405 |
+
き
|
406 |
+
く
|
407 |
+
け
|
408 |
+
こ
|
409 |
+
さ
|
410 |
+
し
|
411 |
+
す
|
412 |
+
せ
|
413 |
+
た
|
414 |
+
ち
|
415 |
+
っ
|
416 |
+
つ
|
417 |
+
と
|
418 |
+
な
|
419 |
+
に
|
420 |
+
の
|
421 |
+
は
|
422 |
+
ひ
|
423 |
+
ふ
|
424 |
+
ほ
|
425 |
+
ま
|
426 |
+
み
|
427 |
+
め
|
428 |
+
も
|
429 |
+
ゃ
|
430 |
+
ゆ
|
431 |
+
ょ
|
432 |
+
ら
|
433 |
+
り
|
434 |
+
る
|
435 |
+
れ
|
436 |
+
わ
|
437 |
+
を
|
438 |
+
ん
|
439 |
+
ァ
|
440 |
+
ア
|
441 |
+
ィ
|
442 |
+
イ
|
443 |
+
ゥ
|
444 |
+
ウ
|
445 |
+
ェ
|
446 |
+
エ
|
447 |
+
ォ
|
448 |
+
オ
|
449 |
+
カ
|
450 |
+
キ
|
451 |
+
ク
|
452 |
+
ケ
|
453 |
+
コ
|
454 |
+
サ
|
455 |
+
シ
|
456 |
+
ス
|
457 |
+
セ
|
458 |
+
タ
|
459 |
+
チ
|
460 |
+
ッ
|
461 |
+
ツ
|
462 |
+
テ
|
463 |
+
ト
|
464 |
+
ナ
|
465 |
+
ニ
|
466 |
+
ネ
|
467 |
+
ノ
|
468 |
+
ハ
|
469 |
+
フ
|
470 |
+
ヘ
|
471 |
+
マ
|
472 |
+
ミ
|
473 |
+
ム
|
474 |
+
モ
|
475 |
+
ャ
|
476 |
+
ュ
|
477 |
+
ョ
|
478 |
+
ラ
|
479 |
+
リ
|
480 |
+
ル
|
481 |
+
レ
|
482 |
+
ロ
|
483 |
+
ン
|
484 |
+
・
|
485 |
+
ー
|
486 |
+
一
|
487 |
+
七
|
488 |
+
下
|
489 |
+
世
|
490 |
+
丙
|
491 |
+
中
|
492 |
+
主
|
493 |
+
乃
|
494 |
+
之
|
495 |
+
乙
|
496 |
+
九
|
497 |
+
二
|
498 |
+
云
|
499 |
+
人
|
500 |
+
今
|
501 |
+
付
|
502 |
+
作
|
503 |
+
侗
|
504 |
+
依
|
505 |
+
信
|
506 |
+
傳
|
507 |
+
儚
|
508 |
+
充
|
509 |
+
光
|
510 |
+
全
|
511 |
+
兵
|
512 |
+
其
|
513 |
+
具
|
514 |
+
円
|
515 |
+
再
|
516 |
+
出
|
517 |
+
判
|
518 |
+
前
|
519 |
+
剛
|
520 |
+
劇
|
521 |
+
劉
|
522 |
+
動
|
523 |
+
化
|
524 |
+
北
|
525 |
+
华
|
526 |
+
厂
|
527 |
+
去
|
528 |
+
古
|
529 |
+
可
|
530 |
+
台
|
531 |
+
史
|
532 |
+
同
|
533 |
+
名
|
534 |
+
君
|
535 |
+
吳
|
536 |
+
周
|
537 |
+
命
|
538 |
+
和
|
539 |
+
咲
|
540 |
+
善
|
541 |
+
四
|
542 |
+
國
|
543 |
+
園
|
544 |
+
圣
|
545 |
+
在
|
546 |
+
坂
|
547 |
+
堤
|
548 |
+
場
|
549 |
+
塘
|
550 |
+
夕
|
551 |
+
大
|
552 |
+
天
|
553 |
+
夫
|
554 |
+
女
|
555 |
+
妙
|
556 |
+
姚
|
557 |
+
子
|
558 |
+
孟
|
559 |
+
守
|
560 |
+
安
|
561 |
+
宋
|
562 |
+
完
|
563 |
+
宗
|
564 |
+
宝
|
565 |
+
宫
|
566 |
+
寝
|
567 |
+
寺
|
568 |
+
小
|
569 |
+
少
|
570 |
+
尾
|
571 |
+
山
|
572 |
+
岳
|
573 |
+
川
|
574 |
+
州
|
575 |
+
巳
|
576 |
+
市
|
577 |
+
師
|
578 |
+
平
|
579 |
+
广
|
580 |
+
庆
|
581 |
+
府
|
582 |
+
座
|
583 |
+
廬
|
584 |
+
建
|
585 |
+
式
|
586 |
+
張
|
587 |
+
彌
|
588 |
+
彩
|
589 |
+
彼
|
590 |
+
後
|
591 |
+
御
|
592 |
+
德
|
593 |
+
思
|
594 |
+
愛
|
595 |
+
憑
|
596 |
+
憶
|
597 |
+
應
|
598 |
+
懷
|
599 |
+
战
|
600 |
+
戦
|
601 |
+
扈
|
602 |
+
技
|
603 |
+
拉
|
604 |
+
拳
|
605 |
+
挑
|
606 |
+
揺
|
607 |
+
攻
|
608 |
+
放
|
609 |
+
政
|
610 |
+
散
|
611 |
+
斯
|
612 |
+
方
|
613 |
+
日
|
614 |
+
旦
|
615 |
+
旭
|
616 |
+
昌
|
617 |
+
明
|
618 |
+
星
|
619 |
+
春
|
620 |
+
晋
|
621 |
+
景
|
622 |
+
曦
|
623 |
+
月
|
624 |
+
望
|
625 |
+
未
|
626 |
+
本
|
627 |
+
李
|
628 |
+
村
|
629 |
+
杜
|
630 |
+
束
|
631 |
+
来
|
632 |
+
林
|
633 |
+
桜
|
634 |
+
梶
|
635 |
+
棘
|
636 |
+
椎
|
637 |
+
楊
|
638 |
+
楚
|
639 |
+
榮
|
640 |
+
橘
|
641 |
+
機
|
642 |
+
正
|
643 |
+
殻
|
644 |
+
殿
|
645 |
+
母
|
646 |
+
水
|
647 |
+
汉
|
648 |
+
沂
|
649 |
+
沙
|
650 |
+
河
|
651 |
+
泗
|
652 |
+
波
|
653 |
+
泣
|
654 |
+
洪
|
655 |
+
淹
|
656 |
+
清
|
657 |
+
湯
|
658 |
+
漢
|
659 |
+
澄
|
660 |
+
澤
|
661 |
+
火
|
662 |
+
灯
|
663 |
+
灵
|
664 |
+
灼
|
665 |
+
焼
|
666 |
+
熱
|
667 |
+
物
|
668 |
+
狐
|
669 |
+
狸
|
670 |
+
玄
|
671 |
+
王
|
672 |
+
玩
|
673 |
+
珂
|
674 |
+
珙
|
675 |
+
球
|
676 |
+
理
|
677 |
+
琦
|
678 |
+
琪
|
679 |
+
瓊
|
680 |
+
生
|
681 |
+
田
|
682 |
+
畢
|
683 |
+
番
|
684 |
+
瘡
|
685 |
+
白
|
686 |
+
皮
|
687 |
+
真
|
688 |
+
砲
|
689 |
+
礮
|
690 |
+
祈
|
691 |
+
神
|
692 |
+
祠
|
693 |
+
秋
|
694 |
+
空
|
695 |
+
立
|
696 |
+
精
|
697 |
+
約
|
698 |
+
絵
|
699 |
+
織
|
700 |
+
義
|
701 |
+
翠
|
702 |
+
者
|
703 |
+
耕
|
704 |
+
肖
|
705 |
+
胡
|
706 |
+
膀
|
707 |
+
臂
|
708 |
+
興
|
709 |
+
良
|
710 |
+
花
|
711 |
+
芳
|
712 |
+
芽
|
713 |
+
若
|
714 |
+
英
|
715 |
+
藕
|
716 |
+
藥
|
717 |
+
蘄
|
718 |
+
蘇
|
719 |
+
行
|
720 |
+
裁
|
721 |
+
規
|
722 |
+
覺
|
723 |
+
观
|
724 |
+
解
|
725 |
+
記
|
726 |
+
誓
|
727 |
+
誡
|
728 |
+
誰
|
729 |
+
謎
|
730 |
+
许
|
731 |
+
谭
|
732 |
+
豪
|
733 |
+
豫
|
734 |
+
費
|
735 |
+
贵
|
736 |
+
赤
|
737 |
+
趙
|
738 |
+
足
|
739 |
+
跡
|
740 |
+
転
|
741 |
+
辛
|
742 |
+
逆
|
743 |
+
遇
|
744 |
+
運
|
745 |
+
過
|
746 |
+
遠
|
747 |
+
選
|
748 |
+
邦
|
749 |
+
邱
|
750 |
+
部
|
751 |
+
郭
|
752 |
+
都
|
753 |
+
酈
|
754 |
+
里
|
755 |
+
野
|
756 |
+
金
|
757 |
+
銃
|
758 |
+
鋼
|
759 |
+
錄
|
760 |
+
錡
|
761 |
+
鍵
|
762 |
+
鐵
|
763 |
+
钱
|
764 |
+
铁
|
765 |
+
關
|
766 |
+
防
|
767 |
+
阿
|
768 |
+
陈
|
769 |
+
陳
|
770 |
+
陽
|
771 |
+
隊
|
772 |
+
階
|
773 |
+
集
|
774 |
+
雪
|
775 |
+
雲
|
776 |
+
霖
|
777 |
+
霹
|
778 |
+
靂
|
779 |
+
韓
|
780 |
+
願
|
781 |
+
顯
|
782 |
+
颜
|
783 |
+
马
|
784 |
+
高
|
785 |
+
龍
|
786 |
+
ﷲ
|
787 |
+
ﻋ
|
788 |
+
/
|
789 |
+
3
|
790 |
+
~
|
791 |
+
##i
|
792 |
+
##y
|
793 |
+
##o
|
794 |
+
##r
|
795 |
+
##g
|
796 |
+
##a
|
797 |
+
##w
|
798 |
+
##l
|
799 |
+
##b
|
800 |
+
##z
|
801 |
+
##t
|
802 |
+
##n
|
803 |
+
##c
|
804 |
+
##h
|
805 |
+
##s
|
806 |
+
##u
|
807 |
+
##d
|
808 |
+
##e
|
809 |
+
##k
|
810 |
+
##v
|
811 |
+
##f
|
812 |
+
##x
|
813 |
+
##q
|
814 |
+
##p
|
815 |
+
##æ
|
816 |
+
##0
|
817 |
+
##5
|
818 |
+
##m
|
819 |
+
##8
|
820 |
+
##4
|
821 |
+
##س
|
822 |
+
##ت
|
823 |
+
##ا
|
824 |
+
##ن
|
825 |
+
##6
|
826 |
+
##1
|
827 |
+
##7
|
828 |
+
##j
|
829 |
+
##つ
|
830 |
+
##う
|
831 |
+
##2
|
832 |
+
##9
|
833 |
+
##3
|
834 |
+
##ø
|
835 |
+
##ล
|
836 |
+
##ว
|
837 |
+
##ง
|
838 |
+
##พ
|
839 |
+
##ไ
|
840 |
+
##ช
|
841 |
+
##ย
|
842 |
+
##า
|
843 |
+
##ร
|
844 |
+
##თ
|
845 |
+
##ა
|
846 |
+
##ვ
|
847 |
+
##რ
|
848 |
+
##ი
|
849 |
+
##ള
|
850 |
+
##あ
|
851 |
+
##ん
|
852 |
+
##α
|
853 |
+
##ν
|
854 |
+
##τ
|
855 |
+
##ο
|
856 |
+
##κ
|
857 |
+
##ρ
|
858 |
+
##ω
|
859 |
+
##ς
|
860 |
+
##の
|
861 |
+
##な
|
862 |
+
##ら
|
863 |
+
##ð
|
864 |
+
##œ
|
865 |
+
##ɛ
|
866 |
+
##ł
|
867 |
+
##η
|
868 |
+
##μ
|
869 |
+
##ซ
|
870 |
+
##ル
|
871 |
+
##シ
|
872 |
+
##ア
|
873 |
+
##リ
|
874 |
+
##ス
|
875 |
+
##ʔ
|
876 |
+
##ल
|
877 |
+
##ᄇ
|
878 |
+
##ᅮ
|
879 |
+
##ᄃ
|
880 |
+
##ᅢ
|
881 |
+
##β
|
882 |
+
##ß
|
883 |
+
##か
|
884 |
+
##た
|
885 |
+
##ə
|
886 |
+
##ʻ
|
887 |
+
##ι
|
888 |
+
##χ
|
889 |
+
##о
|
890 |
+
##л
|
891 |
+
##с
|
892 |
+
##а
|
893 |
+
##т
|
894 |
+
##ы
|
895 |
+
##и
|
896 |
+
##в
|
897 |
+
##к
|
898 |
+
##з
|
899 |
+
##ッ
|
900 |
+
##ク
|
901 |
+
##マ
|
902 |
+
##ン
|
903 |
+
##გ
|
904 |
+
##ლ
|
905 |
+
##ო
|
906 |
+
##ნ
|
907 |
+
##ː
|
908 |
+
##ל
|
909 |
+
##ה
|
910 |
+
##א
|
911 |
+
##く
|
912 |
+
##み
|
913 |
+
##ε
|
914 |
+
##ξ
|
915 |
+
##ল
|
916 |
+
##ˈ
|
917 |
+
##ɡ
|
918 |
+
##ɑ
|
919 |
+
##ɒ
|
920 |
+
##し
|
921 |
+
##す
|
922 |
+
##き
|
923 |
+
##ひ
|
924 |
+
##と
|
925 |
+
##đ
|
926 |
+
##ъ
|
927 |
+
##н
|
928 |
+
##е
|
929 |
+
##י
|
930 |
+
##פ
|
931 |
+
##イ
|
932 |
+
##λ
|
933 |
+
##ق
|
934 |
+
##ع
|
935 |
+
##د
|
936 |
+
##ᅡ
|
937 |
+
##ᆯ
|
938 |
+
##ᄅ
|
939 |
+
##ɪ
|
940 |
+
##ค
|
941 |
+
##ต
|
942 |
+
##व
|
943 |
+
##ा
|
944 |
+
##द
|
945 |
+
##は
|
946 |
+
##り
|
947 |
+
##レ
|
948 |
+
##ー
|
949 |
+
##ツ
|
950 |
+
##ي
|
951 |
+
##ش
|
952 |
+
##و
|
953 |
+
##م
|
954 |
+
##º
|
955 |
+
##ਲ
|
956 |
+
##ਾ
|
957 |
+
##ਹ
|
958 |
+
##д
|
959 |
+
##р
|
960 |
+
##ل
|
961 |
+
##ب
|
962 |
+
##い
|
963 |
+
##ち
|
964 |
+
##ゃ
|
965 |
+
##ʒ
|
966 |
+
##ʃ
|
967 |
+
##ɔ
|
968 |
+
##ह
|
969 |
+
##ニ
|
970 |
+
##ウ
|
971 |
+
##ァ
|
972 |
+
##キ
|
973 |
+
##ュ
|
974 |
+
##3
|
975 |
+
##ხ
|
976 |
+
##ს
|
977 |
+
##お
|
978 |
+
##タ
|
979 |
+
##ാ
|
980 |
+
##ഹ
|
981 |
+
##ɳ
|
982 |
+
##ま
|
983 |
+
##る
|
984 |
+
##ะ
|
985 |
+
##อ
|
986 |
+
##น
|
987 |
+
##ן
|
988 |
+
##я
|
989 |
+
##แ
|
990 |
+
##ก
|
991 |
+
##ɾ
|
992 |
+
##ʲ
|
993 |
+
##フ
|
994 |
+
##უ
|
995 |
+
##ภ
|
996 |
+
##ด
|
997 |
+
##ב
|
998 |
+
##ת
|
999 |
+
##خ
|
1000 |
+
##ラ
|
1001 |
+
##れ
|
1002 |
+
##ण
|
1003 |
+
##स
|
1004 |
+
##न
|
1005 |
+
##ه
|
1006 |
+
##ف
|
1007 |
+
##ر
|
1008 |
+
##エ
|
1009 |
+
##テ
|
1010 |
+
##ษ
|
1011 |
+
##ฐ
|
1012 |
+
##ィ
|
1013 |
+
##क
|
1014 |
+
##ノ
|
1015 |
+
##θ
|
1016 |
+
##ネ
|
1017 |
+
##��
|
1018 |
+
##δ
|
1019 |
+
##ɽ
|
1020 |
+
##ʁ
|
1021 |
+
##ტ
|
1022 |
+
##ჱ
|
1023 |
+
##ェ
|
1024 |
+
##ハ
|
1025 |
+
##υ
|
1026 |
+
##र
|
1027 |
+
##х
|
1028 |
+
##も
|
1029 |
+
##っ
|
1030 |
+
##ょ
|
1031 |
+
##に
|
1032 |
+
##γ
|
1033 |
+
##ც
|
1034 |
+
##ე
|
1035 |
+
##є
|
1036 |
+
##м
|
1037 |
+
##ܕ
|
1038 |
+
##ܝ
|
1039 |
+
##ܢ
|
1040 |
+
##ܬ
|
1041 |
+
##ณ
|
1042 |
+
##ม
|
1043 |
+
##ฮ
|
1044 |
+
##ж
|
1045 |
+
##ם
|
1046 |
+
##ء
|
1047 |
+
##ʊ
|
1048 |
+
##ई
|
1049 |
+
##め
|
1050 |
+
##მ
|
1051 |
+
##ム
|
1052 |
+
##チ
|
1053 |
+
##ᵻ
|
1054 |
+
##ˌ
|
1055 |
+
##ו
|
1056 |
+
##ף
|
1057 |
+
##წ
|
1058 |
+
##ფ
|
1059 |
+
##ャ
|
1060 |
+
##モ
|
1061 |
+
##ɐ
|
1062 |
+
##ᅦ
|
1063 |
+
##ᅩ
|
1064 |
+
##ᆨ
|
1065 |
+
##ᅵ
|
1066 |
+
##ᆸ
|
1067 |
+
##ᅧ
|
1068 |
+
##ᆼ
|
1069 |
+
##ᄋ
|
1070 |
+
##ᆫ
|
1071 |
+
##わ
|
1072 |
+
##ı
|
1073 |
+
##ქ
|
1074 |
+
##დ
|
1075 |
+
##ि
|
1076 |
+
##ჲ
|
1077 |
+
##ר
|
1078 |
+
##セ
|
1079 |
+
##オ
|
1080 |
+
##ゆ
|
1081 |
+
##せ
|
1082 |
+
##ك
|
1083 |
+
##ʿ
|
1084 |
+
##ש
|
1085 |
+
##מ
|
1086 |
+
##צ
|
1087 |
+
##п
|
1088 |
+
##г
|
1089 |
+
##カ
|
1090 |
+
##ܠ
|
1091 |
+
##ܗ
|
1092 |
+
##ܐ
|
1093 |
+
##ナ
|
1094 |
+
##ミ
|
1095 |
+
##こ
|
1096 |
+
##を
|
1097 |
+
##ψ
|
1098 |
+
##サ
|
1099 |
+
##ォ
|
1100 |
+
##π
|
1101 |
+
##ト
|
1102 |
+
##у
|
1103 |
+
##ح
|
1104 |
+
##σ
|
1105 |
+
##เ
|
1106 |
+
##ป
|
1107 |
+
##ш
|
1108 |
+
##ゥ
|
1109 |
+
##ロ
|
1110 |
+
##া
|
1111 |
+
##হ
|
1112 |
+
##ɜ
|
1113 |
+
##ة
|
1114 |
+
##ص
|
1115 |
+
##ס
|
1116 |
+
##ث
|
1117 |
+
##ჳ
|
1118 |
+
##נ
|
1119 |
+
##ذ
|
1120 |
+
##ग
|
1121 |
+
##ɫ
|
1122 |
+
##ц
|
1123 |
+
##ь
|
1124 |
+
##ю
|