|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from .configuration_baichuan import BaichuanConfig |
|
from .generation_utils import build_chat_input, TextIterStreamer |
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
from threading import Thread |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from torch.nn import functional as F |
|
from transformers import PreTrainedModel, PretrainedConfig |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.generation.utils import GenerationConfig |
|
from transformers.utils import logging, ContextManagers |
|
|
|
import os |
|
from contextlib import contextmanager |
|
logger = logging.get_logger(__name__) |
|
|
|
try: |
|
from xformers import ops as xops |
|
except ImportError: |
|
xops = None |
|
logger.warning( |
|
"Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers\npip install xformers." |
|
) |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
if len(mask.size()) == 3: |
|
bsz, src_len, _ = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
expanded_mask = mask[:,None,:,:].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
else: |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]: |
|
hidden_states = hidden_states.to(self.weight.dtype) |
|
|
|
return self.weight * hidden_states |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) |
|
self.max_seq_len_cached = max_position_embeddings |
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32) |
|
freqs = torch.outer(t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32) |
|
self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32) |
|
def forward(self, x, seq_len=None): |
|
|
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32) |
|
freqs = torch.outer(t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32).to(x.device) |
|
self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32).to(x.device) |
|
elif self.cos_cached.device != x.device: |
|
self.cos_cached = self.cos_cached.to(x.device) |
|
self.sin_cached = self.sin_cached.to(x.device) |
|
return ( |
|
self.cos_cached[:, :, :seq_len, ...], |
|
self.sin_cached[:, :, :seq_len, ...], |
|
) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos_, sin_, position_ids): |
|
cos = cos_.squeeze(1).squeeze(0) |
|
sin = sin_.squeeze(1).squeeze(0) |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin) |
|
k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin) |
|
return q_embed.to(q.dtype), k_embed.to(k.dtype) |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
): |
|
super().__init__() |
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) |
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
class DocLLMAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
def __init__(self, config: BaichuanConfig): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self._lambda_ts = config.lambda_ts |
|
self._lambda_st = config.lambda_st |
|
self._lambda_ss = config.lambda_ss |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) |
|
self.spatial_W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
bounding_box_embeddings: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
spatial_past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
|
|
proj = self.W_pack(hidden_states) |
|
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2) |
|
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
spatial_proj = self.spatial_W_pack(bounding_box_embeddings) |
|
spatial_proj = spatial_proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2) |
|
spatial_query_states = spatial_proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
spatial_key_states = spatial_proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
spatial_value_states = spatial_proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
|
|
spatial_kv_seq_len = spatial_key_states.shape[-2] |
|
if spatial_past_key_value is not None: |
|
spatial_kv_seq_len += spatial_past_key_value[0].shape[-2] |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
|
|
spatial_query_states, spatial_key_states = apply_rotary_pos_emb(spatial_query_states, spatial_key_states, cos, sin, position_ids) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
if spatial_past_key_value is not None: |
|
|
|
spatial_key_states = torch.cat([spatial_past_key_value[0], spatial_key_states], dim=2) |
|
spatial_value_states = torch.cat([spatial_past_key_value[1], spatial_value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
spatial_past_key_value = (spatial_key_states, spatial_value_states) if use_cache else None |
|
|
|
if xops is not None and self.training: |
|
attn_weights = None |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
attn_output = xops.memory_efficient_attention( |
|
query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask() |
|
) |
|
else: |
|
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True): |
|
|
|
|
|
|
|
L, S = query_states.size(-2), key_states.size(-2) |
|
scale_factor = 1 / math.sqrt(query_states.size(-1)) |
|
|
|
attn_bias = torch.zeros_like(attention_mask) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.dtype == torch.bool: |
|
attn_bias.masked_fill_(attention_mask.logical_not(), float("-inf")) |
|
else: |
|
attn_bias += attention_mask |
|
|
|
attn_weight_tt = query_states @ key_states.transpose(-2, -1) * scale_factor |
|
attn_weight_ts = query_states @ spatial_key_states.transpose(-2, -1) * scale_factor |
|
attn_weight_st = spatial_query_states @ key_states.transpose(-2, -1) * scale_factor |
|
attn_weight_ss = spatial_query_states @ spatial_key_states.transpose(-2, -1) * scale_factor |
|
|
|
attn_weight = attn_weight_tt + self._lambda_ts * attn_weight_ts + self._lambda_st * attn_weight_st + self._lambda_ss * attn_weight_ss |
|
attn_weight += attn_bias |
|
attn_weight = torch.softmax(attn_weight, dim=-1) |
|
attn_weight = torch.dropout(attn_weight, 0.0, train=True) |
|
attn_output = attn_weight @ value_states |
|
|
|
attn_output = attn_output.transpose(1, 2) |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value, spatial_past_key_value |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
def __init__(self, config: BaichuanConfig): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = DocLLMAttention(config=config) |
|
self.mlp = MLP( |
|
hidden_size=self.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
) |
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
bounding_box_embeddings: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
spatial_past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value, spatial_present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
bounding_box_embeddings=bounding_box_embeddings, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
spatial_past_key_value=spatial_past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
outputs += (spatial_present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class BaichuanPreTrainedModel(PreTrainedModel): |
|
config_class = BaichuanConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["DecoderLayer"] |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, BaichuanModel): |
|
module.gradient_checkpointing = value |
|
|
|
class DocLLMBaseModelOutputWithPast(BaseModelOutputWithPast): |
|
def __init__(self, *args, spatial_past_key_values=None, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.spatial_past_key_values = spatial_past_key_values |
|
|
|
class DocLLMCausalLMOutputWithPast(CausalLMOutputWithPast): |
|
def __init__(self, *args, spatial_past_key_values=None, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.spatial_past_key_values = spatial_past_key_values |
|
|
|
|
|
class BaichuanModel(BaichuanPreTrainedModel): |
|
def __init__(self, config: BaichuanConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.embed_spatial = nn.Linear(4, config.hidden_size, bias=False) |
|
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
input_coordinates: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
spatial_past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
assert input_ids.device == input_coordinates.device |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
spatial_seq_length_with_past = seq_length |
|
spatial_past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if spatial_past_key_values is not None: |
|
spatial_past_key_values_length = spatial_past_key_values[0][0].shape[2] |
|
spatial_seq_length_with_past = spatial_seq_length_with_past + spatial_past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
coordinate_embeds = self.embed_spatial(input_coordinates) |
|
|
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
spatial_next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
spatial_past_key_value = spatial_past_key_values[idx] if spatial_past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
coordinate_embeds, |
|
attention_mask, |
|
position_ids, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
coordinate_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
spatial_past_key_value=spatial_past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
spatial_next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
spatial_next_cache = spatial_next_decoder_cache if use_cache else None |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return DocLLMBaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
spatial_past_key_values=spatial_next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class NormHead(nn.Module): |
|
def __init__(self, hidden_size, vocab_size, bias=False): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size))) |
|
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
self.first_flag = True |
|
|
|
def forward(self, hidden_states): |
|
if self.training: |
|
norm_weight = nn.functional.normalize(self.weight) |
|
elif self.first_flag: |
|
self.first_flag = False |
|
self.weight = nn.Parameter(nn.functional.normalize(self.weight)) |
|
norm_weight = self.weight |
|
else: |
|
norm_weight = self.weight |
|
return nn.functional.linear(hidden_states, norm_weight) |
|
|
|
_init_weights = True |
|
@contextmanager |
|
def no_init_weights(_enable=True): |
|
global _init_weights |
|
old_init_weights = _init_weights |
|
if _enable: |
|
_init_weights = False |
|
try: |
|
yield |
|
finally: |
|
_init_weights = old_init_weights |
|
|
|
class BaichuanForCausalLM(BaichuanPreTrainedModel): |
|
def __init__(self, config, *model_args, **model_kwargs): |
|
super().__init__(config, *model_args, **model_kwargs) |
|
self.model = BaichuanModel(config) |
|
|
|
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False) |
|
if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']: |
|
try: |
|
from .quantizer import quantize_offline, init_model_weight_int4 |
|
except ImportError: |
|
raise ImportError(f"Needs QLinear to run quantize.") |
|
quantize_offline(self, 4) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], |
|
*model_args, |
|
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
ignore_mismatched_sizes: bool = False, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = "main", |
|
use_safetensors: bool = None, |
|
**kwargs, |
|
): |
|
|
|
if not isinstance(config, PretrainedConfig): |
|
config_path = config if config is not None else pretrained_model_name_or_path |
|
config, model_kwargs = cls.config_class.from_pretrained( |
|
config_path, |
|
cache_dir=cache_dir, |
|
return_unused_kwargs=True, |
|
force_download=force_download, |
|
resume_download=False, |
|
proxies=None, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder="", |
|
_from_auto=False, |
|
_from_pipeline=None, |
|
**kwargs, |
|
) |
|
else: |
|
model_kwargs = kwargs |
|
|
|
if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']: |
|
try: |
|
from .quantizer import init_model_weight_int4 |
|
from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map |
|
from accelerate.utils import CustomDtype |
|
from accelerate.utils import get_balanced_memory |
|
except ImportError: |
|
raise ImportError(f"Needs import model weight init func to run quantize.") |
|
|
|
init_contexts = [no_init_weights(_enable=True)] |
|
init_contexts.append(init_empty_weights()) |
|
with ContextManagers(init_contexts): |
|
model = cls(config) |
|
|
|
model_file = os.path.join(pretrained_model_name_or_path, 'pytorch_model.bin') |
|
state_dict = torch.load(model_file, map_location="cpu") |
|
model.is_quantized = True |
|
|
|
device_map = kwargs.pop("device_map", None) |
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
|
|
kwargs = {"no_split_module_classes": model._no_split_modules} |
|
target_dtype = CustomDtype.INT4 |
|
max_memory = get_balanced_memory( |
|
model, |
|
dtype=target_dtype, |
|
low_zero=(device_map == "balanced_low_0"), |
|
max_memory=None, |
|
**kwargs, |
|
) |
|
kwargs["max_memory"] = max_memory |
|
|
|
device_map = infer_auto_device_map(model, dtype=target_dtype, **kwargs) |
|
model = init_model_weight_int4(config, model, state_dict) |
|
|
|
|
|
model.eval() |
|
|
|
if model.can_generate(): |
|
try: |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
pretrained_model_name_or_path, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=False, |
|
proxies=None, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder="", |
|
_from_auto=False, |
|
_from_pipeline=None, |
|
**kwargs, |
|
) |
|
except (OSError, TypeError): |
|
logger.info( |
|
"Generation config file not found, using a generation config created from the model config." |
|
) |
|
pass |
|
|
|
if device_map is not None: |
|
dispatch_model(model, device_map=device_map) |
|
|
|
return model |
|
return super(BaichuanForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args, |
|
config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, |
|
force_download=force_download, local_files_only=local_files_only, token=token, revision=revision, |
|
use_safetensors=use_safetensors, **kwargs) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
input_coordinates: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
spatial_past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
input_coordinates=input_coordinates, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
spatial_past_key_values=spatial_past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return DocLLMCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
spatial_past_key_values=outputs.spatial_past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, spatial_past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"spatial_past_key_values":spatial_past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) |
|
return reordered_past |
|
|
|
def quantize(self, bits: int): |
|
try: |
|
from .quantizer import quantize_online |
|
except ImportError: |
|
raise ImportError(f"Needs QLinear to run quantize.") |
|
return quantize_online(self, bits) |
|
|
|
def chat(self, tokenizer, messages: List[dict], stream=False, |
|
generation_config: Optional[GenerationConfig]=None): |
|
generation_config = generation_config or self.generation_config |
|
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens) |
|
if stream: |
|
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
Thread(target=self.generate, kwargs=dict( |
|
inputs=input_ids, streamer=streamer, |
|
generation_config=generation_config, |
|
)).start() |
|
return streamer |
|
else: |
|
outputs = self.generate(input_ids, generation_config=generation_config) |
|
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True) |
|
return response |
|
|