Jiahuita
commited on
Commit
·
cec65b9
1
Parent(s):
1833f3a
change pipeline to app
Browse files- app.py +56 -0
- config.json +0 -3
- pipeline.py +0 -63
- requirements.txt +4 -4
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
6 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
7 |
+
import json
|
8 |
+
from typing import Union, List
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
# Load model and tokenizer
|
13 |
+
model = load_model('news_classifier.h5')
|
14 |
+
with open('tokenizer.json', 'r') as f:
|
15 |
+
tokenizer_data = json.load(f)
|
16 |
+
tokenizer = tokenizer_from_json(tokenizer_data)
|
17 |
+
|
18 |
+
class PredictionInput(BaseModel):
|
19 |
+
text: Union[str, List[str]]
|
20 |
+
|
21 |
+
class PredictionOutput(BaseModel):
|
22 |
+
label: str
|
23 |
+
score: float
|
24 |
+
|
25 |
+
@app.post("/predict")
|
26 |
+
async def predict(input_data: PredictionInput):
|
27 |
+
try:
|
28 |
+
# Convert input to list if it's a single string
|
29 |
+
texts = input_data.text if isinstance(input_data.text, list) else [input_data.text]
|
30 |
+
|
31 |
+
# Preprocess
|
32 |
+
sequences = tokenizer.texts_to_sequences(texts)
|
33 |
+
padded = pad_sequences(sequences, maxlen=41) # Use your model's expected input length
|
34 |
+
|
35 |
+
# Predict
|
36 |
+
predictions = model.predict(padded)
|
37 |
+
|
38 |
+
# Format results
|
39 |
+
results = []
|
40 |
+
for pred in predictions:
|
41 |
+
score = float(pred[1]) # Assuming binary classification
|
42 |
+
label = "foxnews" if score > 0.5 else "nbc"
|
43 |
+
results.append({
|
44 |
+
"label": label,
|
45 |
+
"score": score if label == "foxnews" else 1 - score
|
46 |
+
})
|
47 |
+
|
48 |
+
# Return single result if input was single string
|
49 |
+
return results[0] if isinstance(input_data.text, str) else results
|
50 |
+
|
51 |
+
except Exception as e:
|
52 |
+
raise HTTPException(status_code=500, detail=str(e))
|
53 |
+
|
54 |
+
@app.get("/")
|
55 |
+
async def root():
|
56 |
+
return {"message": "News Classifier API is running"}
|
config.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:94fe098b058680d6431f9d8e034176ce15684464230c1d7194f98c092ed78cdb
|
3 |
-
size 345
|
|
|
|
|
|
|
|
pipeline.py
DELETED
@@ -1,63 +0,0 @@
|
|
1 |
-
from transformers import PreTrainedModel, PretrainedConfig
|
2 |
-
from tensorflow.keras.models import load_model
|
3 |
-
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
4 |
-
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
-
import numpy as np
|
6 |
-
import json
|
7 |
-
|
8 |
-
class NewsClassifierConfig(PretrainedConfig):
|
9 |
-
model_type = "text_classifier"
|
10 |
-
|
11 |
-
def __init__(
|
12 |
-
self,
|
13 |
-
max_length=41, # Modified to match model input shape
|
14 |
-
vocab_size=74934, # Modified based on embedding layer size
|
15 |
-
embedding_dim=128, # Added to match model architecture
|
16 |
-
hidden_size=64, # Matches final LSTM layer
|
17 |
-
num_labels=2,
|
18 |
-
**kwargs
|
19 |
-
):
|
20 |
-
self.max_length = max_length
|
21 |
-
self.vocab_size = vocab_size
|
22 |
-
self.embedding_dim = embedding_dim
|
23 |
-
self.hidden_size = hidden_size
|
24 |
-
self.num_labels = num_labels
|
25 |
-
super().__init__(**kwargs)
|
26 |
-
|
27 |
-
class NewsClassifier(PreTrainedModel):
|
28 |
-
config_class = NewsClassifierConfig
|
29 |
-
base_model_prefix = "text_classifier"
|
30 |
-
|
31 |
-
def __init__(self, config):
|
32 |
-
super().__init__(config)
|
33 |
-
self.model = None
|
34 |
-
self.tokenizer = None
|
35 |
-
|
36 |
-
def post_init(self):
|
37 |
-
"""Load model and tokenizer after initialization"""
|
38 |
-
self.model = load_model('news_classifier.h5')
|
39 |
-
with open('tokenizer.json', 'r') as f:
|
40 |
-
tokenizer_data = json.load(f)
|
41 |
-
self.tokenizer = tokenizer_from_json(tokenizer_data)
|
42 |
-
|
43 |
-
def forward(self, text_input):
|
44 |
-
if not self.model or not self.tokenizer:
|
45 |
-
self.post_init()
|
46 |
-
|
47 |
-
if isinstance(text_input, str):
|
48 |
-
text_input = [text_input]
|
49 |
-
|
50 |
-
sequences = self.tokenizer.texts_to_sequences(text_input)
|
51 |
-
padded = pad_sequences(sequences, maxlen=self.config.max_length)
|
52 |
-
predictions = self.model.predict(padded, verbose=0)
|
53 |
-
|
54 |
-
results = []
|
55 |
-
for pred in predictions:
|
56 |
-
score = float(pred[1])
|
57 |
-
label = "foxnews" if score > 0.5 else "nbc"
|
58 |
-
results.append({
|
59 |
-
"label": label,
|
60 |
-
"score": score if label == "foxnews" else 1 - score
|
61 |
-
})
|
62 |
-
|
63 |
-
return results[0] if len(text_input) == 1 else results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
tensorflow>=2.10.0
|
2 |
-
transformers>=4.46.3
|
3 |
-
numpy>=1.19.2
|
4 |
-
scikit-learn>=0.24.2
|
5 |
fastapi>=0.68.0
|
6 |
uvicorn>=0.15.0
|
7 |
-
pydantic>=1.8.2
|
|
|
|
|
|
|
|
1 |
tensorflow>=2.10.0
|
|
|
|
|
|
|
2 |
fastapi>=0.68.0
|
3 |
uvicorn>=0.15.0
|
4 |
+
pydantic>=1.8.2
|
5 |
+
numpy>=1.19.2
|
6 |
+
scikit-learn>=0.24.2
|
7 |
+
python-multipart
|