File size: 3,609 Bytes
ed06d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a616753
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: apache-2.0
datasets:
- JetBrains/KExercises
base_model: deepseek-ai/deepseek-coder-6.7b-base
results:
- task:
    type: text-generation
  dataset:
    name: MultiPL-HumanEval (Kotlin)
    type: openai_humaneval
  metrics:
  - name: pass@1
    type: pass@1
    value: 55.28
tags:
- code
---

# Kexer models

Kexer models is a collection of fine-tuned open-source generative text models fine-tuned on Kotlin Exercices dataset. 
This is a repository for fine-tuned Deepseek-coder-6.7b model in the Hugging Face Transformers format.

# Model use

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load pre-trained model and tokenizer
model_name = 'JetBrains/Deepseek-7B-Kexer'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda')

# Create and encode input
input_text = """\
This function takes an integer n and returns factorial of a number:
fun factorial(n: Int): Int {\
"""
input_ids = tokenizer.encode(
    input_text, return_tensors='pt'
).to('cuda')

# Generate
output = model.generate(
    input_ids, max_length=60, num_return_sequences=1, 
    early_stopping=True, pad_token_id=tokenizer.eos_token_id,
)

# Decode output
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
```

As with the base model, we can use FIM. To do this, the following format must be used: 
```
'<|fim▁begin|>' + prefix + '<|fim▁hole|>' + suffix + '<|fim▁end|>'
```

# Training setup

The model was trained on one A100 GPU with following hyperparameters:

|         **Hyperparameter**           |             **Value**              |
|:---------------------------:|:----------------------------------------:|
|           `warmup`            |           10%            |
|        `max_lr`        |          1e-4          |
|        `scheduler`        |          linear          |
|        `total_batch_size`        |          256 (~130K tokens per step)          |
|        `num_epochs`        |          4          |

More details about finetuning can be found in the technical report

# Fine-tuning data

For this model we used 15K exmaples of [Kotlin Exercices dataset](https://huggingface.co/datasets/JetBrains/KExercises). Every example follows HumanEval like format. In total dataset contains about 3.5M tokens. 
For more information about the dataset follow the link.

# Evaluation 

To evaluate we used Kotlin Humaneval ([more infromation here](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval))

Fine-tuned model:

|         **Model name**           |             **Kotlin HumanEval Pass Rate**              |
|:---------------------------:|:----------------------------------------:|
|           `base model`            |           40.99            |
|        `fine-tuned model`        |          55.28         |

# Ethical Considerations and Limitations

Deepseek-7B-Kexer and its variants are a new technology that carries risks with use. The testing conducted to date could not cover all scenarios. For these reasons, as with all LLMs, Deepseek-7B-Kexer potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. The model was fine-tuned on a specific data format (Kotlin tasks), and deviation from this format can also lead to inaccurate or undesirable responses to user queries. Therefore, before deploying any applications of Deepseek-7B-Kexer, developers should perform safety testing and tuning tailored to their specific applications of the model.