File size: 53,766 Bytes
cf04338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1453
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: 'We therefore conducted a hospital based cross sectional study
    involving 101 HCWs from two facilities in Kumasi, Ghana to assess the level of
    preparedness of HCWs to respond to any possible EVD. METHODS: We administered
    a face-to-face questionnaire using an adapted WHO (2015) and CDC (2014) Checklist
    for Ebola Preparedness and assessed overall knowledge gaps, and preparedness of
    the Ghanaian HCWs in selected health facilities of the Ashanti Region of Ghana
    from October to December 2015. RESULTS: A total 92 (91.09%) HCWs indicated they
    were not adequately trained to handle an EVD suspected case. Only 25.74% (n =
    26) considered their facilities sufficiently equipped to handle and manage EVD
    patients. When asked which disinfectant to use after attending to and caring for
    a suspected patient with EVD, only 8.91% (n = 9) could correctly identify the
    right disinfectant (χ(2) = 28.52, p = 0.001). CONCLUSION: Our study demonstrates
    poor knowledge and ill preparedness and unwillingness of many HCWs to attend to
    EVD. Beyond knowledge acquisition, there is the need for more training from time
    to time to fully prepare HCWs to handle any possible EVD case. Text: During the
    last outbreak of Ebola Virus Disease (EVD) and its consequential massive epidemic
    with very high mortality [1] , many health systems and services in West Africa
    were overwhelmed and disrupted.'
  sentences:
  - How many facilities believed they were adequately equipped to handle Ebla virus
    disease?
  - What  developments have been made possible by the study of B-cell repertoire?
  - Where does the NLRP3 inflammasome activate after a SARS-CoV infection?
- source_sentence: All influenza A pandemics since that time, and indeed almost all
    cases of influenza A worldwide (except- ing human infections from avian Viruses
    such as H5N1 and H7N7), have been caused by descendants of the 1918 Virus, including
    “drifted” H1N1 Viruses and reassorted H2N2 and H3N2 Viruses. The latter are composed
    of key genes from the 1918 Virus, updated by subsequently-incor— porated avian
    influenza genes that code for novel surface   *Armed Forces Institute of Pathology,
    Rockville, Maryland, USA; and TNational Institutes of Health, Bethesda, Maryland,
    USA proteins, making the 1918 Virus indeed the “mother” of all pandemics. In 1918,
    the cause of human influenza and its links to avian and swine influenza were unknown.
    Despite clinical and epidemiologic similarities to influenza pandemics of 1889,
    1847, and even earlier, many questioned whether such an explosively fatal disease
    could be influenza at all. That question did not begin to be resolved until the
    1930s, when closely related influenza Viruses (now known to be H1N1 Viruses) were
    isolated, first from pigs and shortly thereafter from humans. Seroepidemiologic
    studies soon linked both of these viruses to the 1918 pandemic (8). Subsequent
    research indicates that descendants of the 1918 Virus still persists enzootically
    in pigs. They probably also circulated continuously in humans, undergoing gradual
    antigenic drift and causing annual epidemics, until the 1950s.
  sentences:
  - What causes Q fever?
  - What was the mean length of the sequenced read?
  - When was it  determined that the 1918  pandemic was caused by the H1N1 Influenza
    virus?
- source_sentence: These results showed that CD3 + CD4 + T cells have obviously (P<0.01)
    increased ( Figure 5B ), nevertheless the CD3 + CD8 + T cells remarkably (P<0.05)
    declined ( Figure 5C ). After calculation, the ratio of CD4 + /CD8 + T cells increased
    ( Figure 5D ). This ratio could also further measure the immunity levels of piglets.
    Cytokine IL-1β and IL-10 levels were determined to evaluate cellular immune responses
    induced by B. subtilis-RC as shown in Figure 6A ,B. As we can see from the diagram,
    significantly (P<0.01) higher IL-1β and IL-10 were produced after oral administration
    with B. subtilis-RC than the other two groups. These all revealed that B. subtilis-RC
    could stimulate cytokines release to mediate communication with and between cells
    of the immune system, improving the mucosal immune response to PEDV infection.
    The PEDV neutralizing antibodies were detected by PRNT assay. Oral administration
    with B. subtilis-RC could effectively reduce the plaque-forming ability of PEDV
    (P<0.01) compared with other two groups in Figure 7 .
  sentences:
  - Why are antibody epitope based peptide vaccines are no longer an active research
    area?
  - What is a conclusion of  this study?
  - What is an effective indicator of a vaccine's ability to generate an immune response?
- source_sentence: Many types of bacteriophage and engineered phage variants, including
    filamentous phage, have been proposed for prophylactic use ex vivo in food safety,
    either in the production pipeline (reviewed in Dalmasso et al., 2014) or for detection
    of foodborne pathogens post-production (reviewed in Schmelcher and Loessner, 2014)
    . Filamentous phage displaying a tetracysteine tag on pIII were used to detect
    E. coli cells through staining with biarsenical dye . M13 phage functionalized
    with metallic silver were highly bactericidal against E. coli and Staphylococcus
    epidermidis . Biosensors based on surface plasmon resonance (Nanduri et al., 2007)
    , piezoelectric transducers (Olsen et al., 2006) , linear dichroism (Pacheco-Gomez
    et al., 2012) , and magnetoelastic sensor technology (Lakshmanan et al., 2007;
    Huang et al., 2009) were devised using filamentous phage displaying scFv or conjugated
    to whole IgG against E. coli, Listeria monocytogenes, Salmonella typhimurium,
    and Bacillus anthracis with limits of detection on the order of 10 2 -10 6 bacterial
    cells/mL. Proof of concept has been demonstrated for use of such phage-based biosensors
    to detect bacterial contamination of live produce (Li et al., 2010b) and eggs
    (Chai et al., 2012) . The filamentous phage particle is enclosed by a rod-like
    protein capsid, ∼1000 nm long and 5 nm wide, made up almost entirely of overlapping
    pVIII monomers, each of which lies ∼27 angstroms from its nearest neighbor and
    exposes two amine groups as well as at least three carboxyl groups (Henry et al.,
    2011) . The regularity of the phage pVIII lattice and its diversity of chemically
    addressable groups make it an ideal scaffold for bioconjugation (Figure 3) . The
    most commonly used approach is functionalization of amine groups with NHS esters
    (van Houten et al., 2006 (van Houten et al., , 2010 Yacoby et al., 2006) , although
    this can result in unwanted acylation of pIII and any displayed biomolecules.
  sentences:
  - What is the contrast with SARS-COV and MERS=COV?
  - What is the structure of a filamentous phage particle?
  - Why do treatment and management vary in efficacy?
- source_sentence: The monolayers were removed from their plastic surfaces and serially
    passaged whenever they became confluent. Cells were plated out onto 96-well culture
    plates for cytotoxicity and anti-influenza assays, and propagated at 37 °C in
    an atmosphere of 5% CO 2 . The influenza strain A/Leningrad/134/17/1957 H2N2)
    was purchased from National Control Institute of Veterinary Bioproducts and Pharmaceuticals
    (Beijing, China). Virus was routinely grown on MDCK cells. The stock cultures
    were prepared from supernatants of infected cells and stored at −80 °C. The cellular
    toxicity of patchouli alcohol on MDCK cells was assessed by the MTT method. Briefly,
    cells were seeded on a microtiter plate in the absence or presence of various
    concentrations (20 µM -0.0098 µM) of patchouli alcohol (eight replicates) and
    incubated at 37 °C in a humidified atmosphere of 5% CO 2 for 72 h. The supernatants
    were discarded, washed with PBS twice and MTT reagent (5 mg/mL in PBS) was added
    to each well. After incubation at 37 °C for 4 h, the supernatants were removed,
    then 200 μL DMSO was added and incubated at 37 °C for another 30 min.
  sentences:
  - What can be a factor in using common vectors for the delivery of vaccines?
  - ' What can  some of the other activities of N have, be linked to?'
  - What method was used to measure the inhibition of viral replication?
pipeline_tag: sentence-similarity
model-index:
- name: nomic-text-embed COVID QA Matryoshka test
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.32098765432098764
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6049382716049383
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7222222222222222
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8580246913580247
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.32098765432098764
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20164609053497942
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14444444444444443
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08580246913580246
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.32098765432098764
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6049382716049383
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7222222222222222
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8580246913580247
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5726476297998092
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4831545169508133
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4876624839192167
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.3395061728395062
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6172839506172839
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.691358024691358
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8395061728395061
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3395061728395062
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20576131687242796
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1382716049382716
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0839506172839506
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3395061728395062
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6172839506172839
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.691358024691358
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8395061728395061
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5769674187028887
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4942803252988438
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.49996505521200235
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.3148148148148148
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5864197530864198
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6604938271604939
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7901234567901234
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3148148148148148
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.19547325102880658
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.13209876543209875
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07901234567901234
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3148148148148148
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5864197530864198
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6604938271604939
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7901234567901234
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5454859667021819
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.46796492259455236
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4775435566293839
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.2716049382716049
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5370370370370371
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.654320987654321
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7283950617283951
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2716049382716049
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.17901234567901234
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1308641975308642
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0728395061728395
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2716049382716049
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5370370370370371
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.654320987654321
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7283950617283951
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4965852195530764
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4220825984714875
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.43352458189921866
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.24074074074074073
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.47530864197530864
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5864197530864198
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6728395061728395
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.24074074074074073
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.15843621399176952
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11728395061728394
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06728395061728394
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.24074074074074073
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.47530864197530864
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5864197530864198
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6728395061728395
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4508577703429953
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3797864001567706
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.39108804574508443
      name: Cosine Map@100
---

# nomic-text-embed COVID QA Matryoshka test

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) <!-- at revision b0753ae76394dd36bcfb912a46018088bca48be0 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("JerryO3/test")
# Run inference
sentences = [
    'The monolayers were removed from their plastic surfaces and serially passaged whenever they became confluent. Cells were plated out onto 96-well culture plates for cytotoxicity and anti-influenza assays, and propagated at 37 °C in an atmosphere of 5% CO 2 . The influenza strain A/Leningrad/134/17/1957 H2N2) was purchased from National Control Institute of Veterinary Bioproducts and Pharmaceuticals (Beijing, China). Virus was routinely grown on MDCK cells. The stock cultures were prepared from supernatants of infected cells and stored at −80 °C. The cellular toxicity of patchouli alcohol on MDCK cells was assessed by the MTT method. Briefly, cells were seeded on a microtiter plate in the absence or presence of various concentrations (20 µM -0.0098 µM) of patchouli alcohol (eight replicates) and incubated at 37 °C in a humidified atmosphere of 5% CO 2 for 72 h. The supernatants were discarded, washed with PBS twice and MTT reagent (5 mg/mL in PBS) was added to each well. After incubation at 37 °C for 4 h, the supernatants were removed, then 200 μL DMSO was added and incubated at 37 °C for another 30 min.',
    'What method was used to measure the inhibition of viral replication?',
    'What can be a factor in using common vectors for the delivery of vaccines?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.321      |
| cosine_accuracy@3   | 0.6049     |
| cosine_accuracy@5   | 0.7222     |
| cosine_accuracy@10  | 0.858      |
| cosine_precision@1  | 0.321      |
| cosine_precision@3  | 0.2016     |
| cosine_precision@5  | 0.1444     |
| cosine_precision@10 | 0.0858     |
| cosine_recall@1     | 0.321      |
| cosine_recall@3     | 0.6049     |
| cosine_recall@5     | 0.7222     |
| cosine_recall@10    | 0.858      |
| cosine_ndcg@10      | 0.5726     |
| cosine_mrr@10       | 0.4832     |
| **cosine_map@100**  | **0.4877** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| cosine_accuracy@1   | 0.3395  |
| cosine_accuracy@3   | 0.6173  |
| cosine_accuracy@5   | 0.6914  |
| cosine_accuracy@10  | 0.8395  |
| cosine_precision@1  | 0.3395  |
| cosine_precision@3  | 0.2058  |
| cosine_precision@5  | 0.1383  |
| cosine_precision@10 | 0.084   |
| cosine_recall@1     | 0.3395  |
| cosine_recall@3     | 0.6173  |
| cosine_recall@5     | 0.6914  |
| cosine_recall@10    | 0.8395  |
| cosine_ndcg@10      | 0.577   |
| cosine_mrr@10       | 0.4943  |
| **cosine_map@100**  | **0.5** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3148     |
| cosine_accuracy@3   | 0.5864     |
| cosine_accuracy@5   | 0.6605     |
| cosine_accuracy@10  | 0.7901     |
| cosine_precision@1  | 0.3148     |
| cosine_precision@3  | 0.1955     |
| cosine_precision@5  | 0.1321     |
| cosine_precision@10 | 0.079      |
| cosine_recall@1     | 0.3148     |
| cosine_recall@3     | 0.5864     |
| cosine_recall@5     | 0.6605     |
| cosine_recall@10    | 0.7901     |
| cosine_ndcg@10      | 0.5455     |
| cosine_mrr@10       | 0.468      |
| **cosine_map@100**  | **0.4775** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2716     |
| cosine_accuracy@3   | 0.537      |
| cosine_accuracy@5   | 0.6543     |
| cosine_accuracy@10  | 0.7284     |
| cosine_precision@1  | 0.2716     |
| cosine_precision@3  | 0.179      |
| cosine_precision@5  | 0.1309     |
| cosine_precision@10 | 0.0728     |
| cosine_recall@1     | 0.2716     |
| cosine_recall@3     | 0.537      |
| cosine_recall@5     | 0.6543     |
| cosine_recall@10    | 0.7284     |
| cosine_ndcg@10      | 0.4966     |
| cosine_mrr@10       | 0.4221     |
| **cosine_map@100**  | **0.4335** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2407     |
| cosine_accuracy@3   | 0.4753     |
| cosine_accuracy@5   | 0.5864     |
| cosine_accuracy@10  | 0.6728     |
| cosine_precision@1  | 0.2407     |
| cosine_precision@3  | 0.1584     |
| cosine_precision@5  | 0.1173     |
| cosine_precision@10 | 0.0673     |
| cosine_recall@1     | 0.2407     |
| cosine_recall@3     | 0.4753     |
| cosine_recall@5     | 0.5864     |
| cosine_recall@10    | 0.6728     |
| cosine_ndcg@10      | 0.4509     |
| cosine_mrr@10       | 0.3798     |
| **cosine_map@100**  | **0.3911** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 1,453 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                              | anchor                                                                            |
  |:--------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                                | string                                                                            |
  | details | <ul><li>min: 112 tokens</li><li>mean: 319.17 tokens</li><li>max: 778 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.84 tokens</li><li>max: 65 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | anchor                                                                                                                                                                  |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>We find that the slowing growth in daily reported deaths in Italy is consistent with a significant impact of interventions implemented several weeks earlier. In Italy, we estimate that the effective reproduction number, Rt, dropped to close to 1 around the time of Iockdown (11th March), although with a high level of uncertainty. Overall, we estimate that countries have managed to reduce their reproduction number. Our estimates have wide credible intervals and contain 1 for countries that have implemented a|| interventions considered in our analysis. This means that the reproduction number may be above or below this value. With current interventions remaining in place to at least the end of March, we estimate that interventions across all 11 countries will have averted 59,000 deaths up to 31 March [95% credible interval 21,000-120,000]. Many more deaths will be averted through ensuring that interventions remain in place until transmission drops to low levels. We estimate that, across all 11 countries between 7 and 43 million individuals have been infected with SARS-CoV-Z up to 28th March, representing between 1.88% and 11.43% ofthe population.</code>                                                                                                                                                                                                                                                                                                                                                                                      | <code>Approximately how many deaths have been averted in Western Europe with current non-pharmaceutical interventions remaining in place until the end of March?</code> |
  | <code>[46] Where the biological samples are taken from also play a role in the sensitivity of these tests. For SARS-CoV and MERS-CoV, specimens collected from the lower respiratory tract such as sputum and tracheal aspirates have higher and more prolonged levels of viral RNA because of the tropism of the virus. MERS-CoV viral loads are also higher for severe cases and have longer viral shedding compared to mild cases. Although upper respiratory tract specimens such as nasopharyngeal or oropharyngeal swabs can be used, they have potentially lower viral loads and may have higher risk of false-negatives among the mild MERS and SARS cases [102, 103] , and likely among the 2019-nCoV cases. The existing practices in detecting genetic material of coronaviruses such as SARS-CoV and MERS-CoV include (a) reverse transcription-polymerase chain reaction (RT-PCR), (b) real-time RT-PCR (rRT-PCR), (c) reverse transcription loop-mediated isothermal amplification (RT-LAMP) and (d) real-time RT-LAMP [104] . Nucleic amplification tests (NAAT) are usually preferred as in the case of MERS-CoV diagnosis as it has the highest sensitivity at the earliest time point in the acute phase of infection [102] . Chinese health authorities have recently posted the full genome of 2019-nCoV in the GenBank and in GISAID portal to facilitate in the detection of the virus [11] . Several laboratory assays have been developed to detect the novel coronavirus in Wuhan, as highlighted in WHO's interim guidance on nCoV laboratory testing of suspected cases.</code> | <code>Why are Nucleic amplification tests (NAAT) usually preferred as in the case of MERS-CoV diagnosis?</code>                                                         |
  | <code>By the time symptoms appear in HCPS, both strong antiviral responses, and, for the more virulent viral genotypes, viral RNA can be detected in blood plasma or nucleated blood cells respectively [63, 64] . At least three studies have correlated plasma viral RNA with disease severity for HCPS and HFRS, suggesting that the replication of the virus plays an ongoing and real-time role in viral pathogenesis [65] [66] [67] . Several hallmark pathologic changes have been identified that occur in both HFRS and HCPS. A critical feature of both is a transient (~ 1-5 days) capillary leak involving the kidney and retroperitoneal space in HFRS and the lungs in HCPS. The resulting leakage is exudative in character, with chemical composition high in protein and resembling plasma. The continued experience indicating the strong tissue tropism for endothelial cells, specifically, is among the several factors that make β3 integrin an especially attractive candidate as an important in vivo receptor for hantaviruses. It is likely that hantaviruses arrive at their target tissues through uptake by regional lymph nodes, perhaps with or within an escorting lung histiocyte. The virus seeds local endothelium, where the first few infected cells give rise, ultimately, to a primary viremia, a process that appears to take a long time for hantavirus infections [62, 63] .</code>                                                                                                                                                                              | <code>Which is an especially attractive candidate as an important in vivo receptor for hantaviruses?</code>                                                             |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `auto_find_batch_size`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: True
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step    | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.0549  | 10      | 5.6725        | -                      | -                      | -                      | -                     | -                      |
| 0.1099  | 20      | 4.6781        | -                      | -                      | -                      | -                     | -                      |
| 0.1648  | 30      | 3.9597        | -                      | -                      | -                      | -                     | -                      |
| 0.2198  | 40      | 3.2221        | -                      | -                      | -                      | -                     | -                      |
| 0.2747  | 50      | 2.2144        | -                      | -                      | -                      | -                     | -                      |
| 0.3297  | 60      | 2.8916        | -                      | -                      | -                      | -                     | -                      |
| 0.3846  | 70      | 1.7038        | -                      | -                      | -                      | -                     | -                      |
| 0.4396  | 80      | 2.4738        | -                      | -                      | -                      | -                     | -                      |
| 0.4945  | 90      | 1.8951        | -                      | -                      | -                      | -                     | -                      |
| 0.5495  | 100     | 1.515         | -                      | -                      | -                      | -                     | -                      |
| 0.6044  | 110     | 1.5431        | -                      | -                      | -                      | -                     | -                      |
| 0.6593  | 120     | 2.4492        | -                      | -                      | -                      | -                     | -                      |
| 0.7143  | 130     | 1.656         | -                      | -                      | -                      | -                     | -                      |
| 0.7692  | 140     | 1.7953        | -                      | -                      | -                      | -                     | -                      |
| 0.8242  | 150     | 1.8679        | -                      | -                      | -                      | -                     | -                      |
| 0.8791  | 160     | 2.1551        | -                      | -                      | -                      | -                     | -                      |
| 0.9341  | 170     | 1.5363        | -                      | -                      | -                      | -                     | -                      |
| 0.9890  | 180     | 1.2529        | -                      | -                      | -                      | -                     | -                      |
| 1.0     | 182     | -             | 0.3894                 | 0.4585                 | 0.4805                 | 0.3287                | 0.4926                 |
| 1.0440  | 190     | 1.319         | -                      | -                      | -                      | -                     | -                      |
| 1.0989  | 200     | 1.0985        | -                      | -                      | -                      | -                     | -                      |
| 1.1538  | 210     | 1.0403        | -                      | -                      | -                      | -                     | -                      |
| 1.2088  | 220     | 0.4363        | -                      | -                      | -                      | -                     | -                      |
| 1.2637  | 230     | 0.2102        | -                      | -                      | -                      | -                     | -                      |
| 1.3187  | 240     | 0.3584        | -                      | -                      | -                      | -                     | -                      |
| 1.3736  | 250     | 0.2683        | -                      | -                      | -                      | -                     | -                      |
| 1.4286  | 260     | 0.4438        | -                      | -                      | -                      | -                     | -                      |
| 1.4835  | 270     | 0.34          | -                      | -                      | -                      | -                     | -                      |
| 1.5385  | 280     | 0.4296        | -                      | -                      | -                      | -                     | -                      |
| 1.5934  | 290     | 0.2323        | -                      | -                      | -                      | -                     | -                      |
| 1.6484  | 300     | 0.3259        | -                      | -                      | -                      | -                     | -                      |
| 1.7033  | 310     | 0.4339        | -                      | -                      | -                      | -                     | -                      |
| 1.7582  | 320     | 0.1524        | -                      | -                      | -                      | -                     | -                      |
| 1.8132  | 330     | 0.0782        | -                      | -                      | -                      | -                     | -                      |
| 1.8681  | 340     | 0.4306        | -                      | -                      | -                      | -                     | -                      |
| 1.9231  | 350     | 0.312         | -                      | -                      | -                      | -                     | -                      |
| 1.9780  | 360     | 0.2112        | -                      | -                      | -                      | -                     | -                      |
| 2.0     | 364     | -             | 0.4139                 | 0.4526                 | 0.4762                 | 0.3761                | 0.4672                 |
| 2.0330  | 370     | 0.2341        | -                      | -                      | -                      | -                     | -                      |
| 2.0879  | 380     | 0.1965        | -                      | -                      | -                      | -                     | -                      |
| 2.1429  | 390     | 0.3019        | -                      | -                      | -                      | -                     | -                      |
| 2.1978  | 400     | 0.1518        | -                      | -                      | -                      | -                     | -                      |
| 2.2527  | 410     | 0.0203        | -                      | -                      | -                      | -                     | -                      |
| 2.3077  | 420     | 0.0687        | -                      | -                      | -                      | -                     | -                      |
| 2.3626  | 430     | 0.0206        | -                      | -                      | -                      | -                     | -                      |
| 2.4176  | 440     | 0.3615        | -                      | -                      | -                      | -                     | -                      |
| 2.4725  | 450     | 0.4674        | -                      | -                      | -                      | -                     | -                      |
| 2.5275  | 460     | 0.0623        | -                      | -                      | -                      | -                     | -                      |
| 2.5824  | 470     | 0.0222        | -                      | -                      | -                      | -                     | -                      |
| 2.6374  | 480     | 0.1049        | -                      | -                      | -                      | -                     | -                      |
| 2.6923  | 490     | 0.4955        | -                      | -                      | -                      | -                     | -                      |
| 2.7473  | 500     | 0.439         | -                      | -                      | -                      | -                     | -                      |
| 2.8022  | 510     | 0.0052        | -                      | -                      | -                      | -                     | -                      |
| 2.8571  | 520     | 0.16          | -                      | -                      | -                      | -                     | -                      |
| 2.9121  | 530     | 0.0583        | -                      | -                      | -                      | -                     | -                      |
| 2.9670  | 540     | 0.0127        | -                      | -                      | -                      | -                     | -                      |
| **3.0** | **546** | **-**         | **0.4427**             | **0.4765**             | **0.508**              | **0.397**             | **0.5021**             |
| 3.0220  | 550     | 0.0143        | -                      | -                      | -                      | -                     | -                      |
| 3.0769  | 560     | 0.0228        | -                      | -                      | -                      | -                     | -                      |
| 3.1319  | 570     | 0.0704        | -                      | -                      | -                      | -                     | -                      |
| 3.1868  | 580     | 0.0086        | -                      | -                      | -                      | -                     | -                      |
| 3.2418  | 590     | 0.001         | -                      | -                      | -                      | -                     | -                      |
| 3.2967  | 600     | 0.002         | -                      | -                      | -                      | -                     | -                      |
| 3.3516  | 610     | 0.0016        | -                      | -                      | -                      | -                     | -                      |
| 3.4066  | 620     | 0.021         | -                      | -                      | -                      | -                     | -                      |
| 3.4615  | 630     | 0.0013        | -                      | -                      | -                      | -                     | -                      |
| 3.5165  | 640     | 0.0723        | -                      | -                      | -                      | -                     | -                      |
| 3.5714  | 650     | 0.0045        | -                      | -                      | -                      | -                     | -                      |
| 3.6264  | 660     | 0.0048        | -                      | -                      | -                      | -                     | -                      |
| 3.6813  | 670     | 0.1005        | -                      | -                      | -                      | -                     | -                      |
| 3.7363  | 680     | 0.0018        | -                      | -                      | -                      | -                     | -                      |
| 3.7912  | 690     | 0.0101        | -                      | -                      | -                      | -                     | -                      |
| 3.8462  | 700     | 0.0104        | -                      | -                      | -                      | -                     | -                      |
| 3.9011  | 710     | 0.0025        | -                      | -                      | -                      | -                     | -                      |
| 3.9560  | 720     | 0.014         | -                      | -                      | -                      | -                     | -                      |
| 4.0     | 728     | -             | 0.4335                 | 0.4775                 | 0.5000                 | 0.3911                | 0.4877                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->