File size: 6,420 Bytes
9180731 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
---
language:
- en
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
base_model: roberta-large
datasets:
- Jerado/enron_intangibles_ner
metrics:
- precision
- recall
- f1
widget:
- text: Negotiated rates in these types of deals (basis for new builds) have been
allowed to stand for the life of the contracts, in the case of Kern River and
Mojave.
- text: It seems that there is a single significant policy concern for the ASIC policy
committee.
- text: 'The appropriate price is in Enpower, but the revenue has never appeared (Deal
#590753).'
- text: FYI, to me, a prepayment for a service contract would generally be amortized
over the life of the contract.
- text: 'From: d..steffes @ enron.com To: john.shelk @ enron.com, l..nicolay @ enron.com,
richard.shapiro @ enron.com, sarah.novosel @ enron.com Subject: Southern Co.''s
Testimony The first order of business is getting the cost / benefit analysis done.'
pipeline_tag: token-classification
model-index:
- name: SpanMarker with roberta-large on Jerado/enron_intangibles_ner
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: Unknown
type: Jerado/enron_intangibles_ner
split: test
metrics:
- type: f1
value: 0.4390243902439024
name: F1
- type: precision
value: 0.42857142857142855
name: Precision
- type: recall
value: 0.45
name: Recall
---
# SpanMarker with roberta-large on Jerado/enron_intangibles_ner
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [Jerado/enron_intangibles_ner](https://huggingface.co/datasets/Jerado/enron_intangibles_ner) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [roberta-large](https://huggingface.co/roberta-large) as the underlying encoder.
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [roberta-large](https://huggingface.co/roberta-large)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 6 words
- **Training Dataset:** [Jerado/enron_intangibles_ner](https://huggingface.co/datasets/Jerado/enron_intangibles_ner)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:-----------|:--------------------------------------------|
| Intangible | "deal", "sample EES deal", "Enpower system" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:-----------|:----------|:-------|:-------|
| **all** | 0.4286 | 0.45 | 0.4390 |
| Intangible | 0.4286 | 0.45 | 0.4390 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("It seems that there is a single significant policy concern for the ASIC policy committee.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 19.8706 | 216 |
| Entities per sentence | 0 | 0.1865 | 6 |
### Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 11
- mixed_precision_training: Native AMP
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:-------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 3.3557 | 500 | 0.0075 | 0.4444 | 0.1667 | 0.2424 | 0.9753 |
| 6.7114 | 1000 | 0.0084 | 0.5714 | 0.3333 | 0.4211 | 0.9793 |
| 10.0671 | 1500 | 0.0098 | 0.6111 | 0.4583 | 0.5238 | 0.9815 |
### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.40.0
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |