File size: 6,420 Bytes
9180731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
---
language:
- en
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
base_model: roberta-large
datasets:
- Jerado/enron_intangibles_ner
metrics:
- precision
- recall
- f1
widget:
- text: Negotiated rates in these types of deals (basis for new builds) have been
    allowed to stand for the life of the contracts, in the case of Kern River and
    Mojave.
- text: It seems that there is a single significant policy concern for the ASIC policy
    committee.
- text: 'The appropriate price is in Enpower, but the revenue has never appeared (Deal
    #590753).'
- text: FYI, to me, a prepayment for a service contract would generally be amortized
    over the life of the contract.
- text: 'From: d..steffes @ enron.com To: john.shelk @ enron.com, l..nicolay @ enron.com,
    richard.shapiro @ enron.com, sarah.novosel @ enron.com Subject: Southern Co.''s
    Testimony The first order of business is getting the cost / benefit analysis done.'
pipeline_tag: token-classification
model-index:
- name: SpanMarker with roberta-large on Jerado/enron_intangibles_ner
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: Unknown
      type: Jerado/enron_intangibles_ner
      split: test
    metrics:
    - type: f1
      value: 0.4390243902439024
      name: F1
    - type: precision
      value: 0.42857142857142855
      name: Precision
    - type: recall
      value: 0.45
      name: Recall
---

# SpanMarker with roberta-large on Jerado/enron_intangibles_ner

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [Jerado/enron_intangibles_ner](https://huggingface.co/datasets/Jerado/enron_intangibles_ner) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [roberta-large](https://huggingface.co/roberta-large) as the underlying encoder.

## Model Details

### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [roberta-large](https://huggingface.co/roberta-large)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 6 words
- **Training Dataset:** [Jerado/enron_intangibles_ner](https://huggingface.co/datasets/Jerado/enron_intangibles_ner)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label      | Examples                                    |
|:-----------|:--------------------------------------------|
| Intangible | "deal", "sample EES deal", "Enpower system" |

## Evaluation

### Metrics
| Label      | Precision | Recall | F1     |
|:-----------|:----------|:-------|:-------|
| **all**    | 0.4286    | 0.45   | 0.4390 |
| Intangible | 0.4286    | 0.45   | 0.4390 |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("It seems that there is a single significant policy concern for the ASIC policy committee.")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 1   | 19.8706 | 216 |
| Entities per sentence | 0   | 0.1865  | 6   |

### Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 11
- mixed_precision_training: Native AMP

### Training Results
| Epoch   | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:-------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 3.3557  | 500  | 0.0075          | 0.4444               | 0.1667            | 0.2424        | 0.9753              |
| 6.7114  | 1000 | 0.0084          | 0.5714               | 0.3333            | 0.4211        | 0.9793              |
| 10.0671 | 1500 | 0.0098          | 0.6111               | 0.4583            | 0.5238        | 0.9815              |

### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.40.0
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->