Jeong-su commited on
Commit
e4a0b33
1 Parent(s): fbdb4ee

Add fine-tuned model files

Browse files
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: llava-hf/LLaVA-NeXT-Video-7B-hf
5
+ tags:
6
+ - llama-factory
7
+ - lora
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: train_2024-12-01-18-22-24
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # train_2024-12-01-18-22-24
18
+
19
+ This model is a fine-tuned version of [llava-hf/LLaVA-NeXT-Video-7B-hf](https://huggingface.co/llava-hf/LLaVA-NeXT-Video-7B-hf) on the merger, the LLM_dataset(4o) and the LLM_dataset(4mini) datasets.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 2
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 2
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 32
46
+ - total_eval_batch_size: 16
47
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - lr_scheduler_warmup_steps: 100
50
+ - num_epochs: 1.0
51
+
52
+ ### Training results
53
+
54
+
55
+
56
+ ### Framework versions
57
+
58
+ - PEFT 0.12.0
59
+ - Transformers 4.46.1
60
+ - Pytorch 2.3.1+cu121
61
+ - Datasets 3.1.0
62
+ - Tokenizers 0.20.3
adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "llava-hf/LLaVA-NeXT-Video-7B-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": "^(?!.*vision_tower).*(?:down_proj|v_proj|k_proj|q_proj|up_proj|o_proj|gate_proj).*",
23
+ "task_type": "CAUSAL_LM",
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16c3e62651b9f8eb60399f5f1140c8b200297419a976c8830d669d09d29a8813
3
+ size 40043208
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<image>": 32001,
3
+ "<video>": 32000
4
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9832402234636871,
3
+ "total_flos": 8.043290589292134e+16,
4
+ "train_loss": 0.8802601207386364,
5
+ "train_runtime": 618.3986,
6
+ "train_samples_per_second": 1.155,
7
+ "train_steps_per_second": 0.036
8
+ }
bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8326ca28c7c35adb2f9ecc7ecbb84faee0d1d7449e25b8c4ae71aa53ed7da23
3
+ size 119962160
bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd062851371296c614e0bdae1d95959deaaa82e72269ea37d527d89c79951903
3
+ size 119962288
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% for message in messages %}{% if message['role'] != 'system' %}{{ message['role'].upper() + ': '}}{% endif %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'video') %}{{ '<video>\n' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] + ' '}}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] + ' '}}{% endgeneration %}{% endfor %}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}"
3
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step22
llamaboard_config.yaml ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: flashattn2
2
+ top.checkpoint_path: []
3
+ top.finetuning_type: lora
4
+ top.model_name: LLaVA-NeXT-Video-7B-Chat
5
+ top.quantization_bit: '4'
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: none
8
+ top.template: llava_next_video
9
+ train.additional_target: ''
10
+ train.badam_mode: layer
11
+ train.badam_switch_interval: 50
12
+ train.badam_switch_mode: ascending
13
+ train.badam_update_ratio: 0.05
14
+ train.batch_size: 2
15
+ train.compute_type: bf16
16
+ train.create_new_adapter: false
17
+ train.cutoff_len: 4096
18
+ train.dataset:
19
+ - merger
20
+ - LLM_dataset(4o)
21
+ - LLM_dataset(4mini)
22
+ train.dataset_dir: /media/dl/7DC4-B1CE/500_video
23
+ train.ds_offload: false
24
+ train.ds_stage: '2'
25
+ train.extra_args: '{"optim": "adamw_torch"}'
26
+ train.freeze_extra_modules: ''
27
+ train.freeze_trainable_layers: 2
28
+ train.freeze_trainable_modules: all
29
+ train.galore_rank: 16
30
+ train.galore_scale: 0.25
31
+ train.galore_target: all
32
+ train.galore_update_interval: 200
33
+ train.gradient_accumulation_steps: 8
34
+ train.learning_rate: 5e-5
35
+ train.logging_steps: 5
36
+ train.lora_alpha: 16
37
+ train.lora_dropout: 0
38
+ train.lora_rank: 8
39
+ train.lora_target: ''
40
+ train.loraplus_lr_ratio: 0
41
+ train.lr_scheduler_type: cosine
42
+ train.mask_history: false
43
+ train.max_grad_norm: '1.0'
44
+ train.max_samples: '100000'
45
+ train.neat_packing: false
46
+ train.neftune_alpha: 0
47
+ train.num_train_epochs: '1'
48
+ train.packing: false
49
+ train.ppo_score_norm: false
50
+ train.ppo_whiten_rewards: false
51
+ train.pref_beta: 0.1
52
+ train.pref_ftx: 0
53
+ train.pref_loss: sigmoid
54
+ train.report_to: false
55
+ train.resize_vocab: false
56
+ train.reward_model: null
57
+ train.save_steps: 100
58
+ train.shift_attn: false
59
+ train.train_on_prompt: false
60
+ train.training_stage: Supervised Fine-Tuning
61
+ train.use_badam: false
62
+ train.use_dora: false
63
+ train.use_galore: false
64
+ train.use_llama_pro: false
65
+ train.use_pissa: false
66
+ train.use_rslora: false
67
+ train.val_size: 0
68
+ train.warmup_steps: 100
mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2b6318bc36a97cfe9e658ba309603c187ee05cdb5ca8ca7faa8c488c8b3366d
3
+ size 149489983
preprocessor_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 336,
4
+ "width": 336
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_pad": true,
10
+ "do_rescale": true,
11
+ "do_resize": true,
12
+ "image_grid_pinpoints": [
13
+ [
14
+ 336,
15
+ 672
16
+ ],
17
+ [
18
+ 672,
19
+ 336
20
+ ],
21
+ [
22
+ 672,
23
+ 672
24
+ ],
25
+ [
26
+ 1008,
27
+ 336
28
+ ],
29
+ [
30
+ 336,
31
+ 1008
32
+ ]
33
+ ],
34
+ "image_mean": [
35
+ 0.48145466,
36
+ 0.4578275,
37
+ 0.40821073
38
+ ],
39
+ "image_processor_type": "LlavaNextImageProcessor",
40
+ "image_std": [
41
+ 0.26862954,
42
+ 0.26130258,
43
+ 0.27577711
44
+ ],
45
+ "processor_class": "LlavaNextVideoProcessor",
46
+ "resample": 3,
47
+ "rescale_factor": 0.00392156862745098,
48
+ "size": {
49
+ "shortest_edge": 336
50
+ }
51
+ }
processor_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "image_token": "<image>",
3
+ "patch_size": 14,
4
+ "processor_class": "LlavaNextVideoProcessor",
5
+ "video_token": "<video>",
6
+ "vision_feature_select_strategy": "default"
7
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4
3
+ size 14512
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6
3
+ size 14512
running_log.txt ADDED
@@ -0,0 +1,834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [INFO|2024-12-01 18:24:23] parser.py:355 >> Process rank: 1, device: cuda:1, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
2
+
3
+ [WARNING|2024-12-01 18:24:23] logging.py:162 >> We recommend enable `upcast_layernorm` in quantized training.
4
+
5
+ [WARNING|2024-12-01 18:24:23] logging.py:162 >> `ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.
6
+
7
+ [INFO|2024-12-01 18:24:23] parser.py:355 >> Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
8
+
9
+ [INFO|2024-12-01 18:24:23] configuration_utils.py:679 >> loading configuration file config.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/config.json
10
+
11
+ [INFO|2024-12-01 18:24:23] configuration_utils.py:746 >> Model config LlavaNextVideoConfig {
12
+ "_name_or_path": "llava-hf/LLaVA-NeXT-Video-7B-hf",
13
+ "architectures": [
14
+ "LlavaNextVideoForConditionalGeneration"
15
+ ],
16
+ "ignore_index": -100,
17
+ "image_grid_pinpoints": [
18
+ [
19
+ 336,
20
+ 672
21
+ ],
22
+ [
23
+ 672,
24
+ 336
25
+ ],
26
+ [
27
+ 672,
28
+ 672
29
+ ],
30
+ [
31
+ 1008,
32
+ 336
33
+ ],
34
+ [
35
+ 336,
36
+ 1008
37
+ ]
38
+ ],
39
+ "image_seq_length": 576,
40
+ "image_token_index": 32001,
41
+ "model_type": "llava_next_video",
42
+ "projector_hidden_act": "gelu",
43
+ "spatial_pool_mode": "average",
44
+ "spatial_pool_out_channels": 1024,
45
+ "spatial_pool_stride": 2,
46
+ "text_config": {
47
+ "_attn_implementation_autoset": false,
48
+ "_name_or_path": "lmsys/vicuna-7b-v1.5",
49
+ "add_cross_attention": false,
50
+ "architectures": [
51
+ "LlamaForCausalLM"
52
+ ],
53
+ "attention_bias": false,
54
+ "attention_dropout": 0.0,
55
+ "bad_words_ids": null,
56
+ "begin_suppress_tokens": null,
57
+ "bos_token_id": 1,
58
+ "chunk_size_feed_forward": 0,
59
+ "cross_attention_hidden_size": null,
60
+ "decoder_start_token_id": null,
61
+ "diversity_penalty": 0.0,
62
+ "do_sample": false,
63
+ "early_stopping": false,
64
+ "encoder_no_repeat_ngram_size": 0,
65
+ "eos_token_id": 2,
66
+ "exponential_decay_length_penalty": null,
67
+ "finetuning_task": null,
68
+ "forced_bos_token_id": null,
69
+ "forced_eos_token_id": null,
70
+ "head_dim": 128,
71
+ "hidden_act": "silu",
72
+ "hidden_size": 4096,
73
+ "id2label": {
74
+ "0": "LABEL_0",
75
+ "1": "LABEL_1"
76
+ },
77
+ "initializer_range": 0.02,
78
+ "intermediate_size": 11008,
79
+ "is_decoder": false,
80
+ "is_encoder_decoder": false,
81
+ "label2id": {
82
+ "LABEL_0": 0,
83
+ "LABEL_1": 1
84
+ },
85
+ "length_penalty": 1.0,
86
+ "max_length": 20,
87
+ "max_position_embeddings": 4096,
88
+ "min_length": 0,
89
+ "mlp_bias": false,
90
+ "model_type": "llama",
91
+ "no_repeat_ngram_size": 0,
92
+ "num_attention_heads": 32,
93
+ "num_beam_groups": 1,
94
+ "num_beams": 1,
95
+ "num_hidden_layers": 32,
96
+ "num_key_value_heads": 32,
97
+ "num_return_sequences": 1,
98
+ "output_attentions": false,
99
+ "output_hidden_states": false,
100
+ "output_scores": false,
101
+ "pad_token_id": 0,
102
+ "prefix": null,
103
+ "pretraining_tp": 1,
104
+ "problem_type": null,
105
+ "pruned_heads": {},
106
+ "remove_invalid_values": false,
107
+ "repetition_penalty": 1.0,
108
+ "return_dict": true,
109
+ "return_dict_in_generate": false,
110
+ "rms_norm_eps": 1e-05,
111
+ "rope_scaling": {
112
+ "factor": 2.5,
113
+ "rope_type": "linear",
114
+ "type": "linear"
115
+ },
116
+ "rope_theta": 10000.0,
117
+ "sep_token_id": null,
118
+ "suppress_tokens": null,
119
+ "task_specific_params": null,
120
+ "temperature": 1.0,
121
+ "tf_legacy_loss": false,
122
+ "tie_encoder_decoder": false,
123
+ "tie_word_embeddings": false,
124
+ "tokenizer_class": null,
125
+ "top_k": 50,
126
+ "top_p": 1.0,
127
+ "torch_dtype": "float16",
128
+ "torchscript": false,
129
+ "type": "linear",
130
+ "typical_p": 1.0,
131
+ "use_bfloat16": false,
132
+ "use_cache": true,
133
+ "vocab_size": 32064
134
+ },
135
+ "tie_word_embeddings": false,
136
+ "torch_dtype": "bfloat16",
137
+ "transformers_version": "4.46.1",
138
+ "use_image_newline_parameter": true,
139
+ "video_seq_length": 288,
140
+ "video_token_index": 32000,
141
+ "vision_config": {
142
+ "_attn_implementation_autoset": false,
143
+ "_name_or_path": "",
144
+ "add_cross_attention": false,
145
+ "architectures": null,
146
+ "attention_dropout": 0.0,
147
+ "bad_words_ids": null,
148
+ "begin_suppress_tokens": null,
149
+ "bos_token_id": null,
150
+ "chunk_size_feed_forward": 0,
151
+ "cross_attention_hidden_size": null,
152
+ "decoder_start_token_id": null,
153
+ "diversity_penalty": 0.0,
154
+ "do_sample": false,
155
+ "early_stopping": false,
156
+ "encoder_no_repeat_ngram_size": 0,
157
+ "eos_token_id": null,
158
+ "exponential_decay_length_penalty": null,
159
+ "finetuning_task": null,
160
+ "forced_bos_token_id": null,
161
+ "forced_eos_token_id": null,
162
+ "hidden_act": "quick_gelu",
163
+ "hidden_size": 1024,
164
+ "id2label": {
165
+ "0": "LABEL_0",
166
+ "1": "LABEL_1"
167
+ },
168
+ "image_size": 336,
169
+ "initializer_factor": 1.0,
170
+ "initializer_range": 0.02,
171
+ "intermediate_size": 4096,
172
+ "is_decoder": false,
173
+ "is_encoder_decoder": false,
174
+ "label2id": {
175
+ "LABEL_0": 0,
176
+ "LABEL_1": 1
177
+ },
178
+ "layer_norm_eps": 1e-05,
179
+ "length_penalty": 1.0,
180
+ "max_length": 20,
181
+ "min_length": 0,
182
+ "model_type": "clip_vision_model",
183
+ "no_repeat_ngram_size": 0,
184
+ "num_attention_heads": 16,
185
+ "num_beam_groups": 1,
186
+ "num_beams": 1,
187
+ "num_channels": 3,
188
+ "num_hidden_layers": 24,
189
+ "num_return_sequences": 1,
190
+ "output_attentions": false,
191
+ "output_hidden_states": false,
192
+ "output_scores": false,
193
+ "pad_token_id": null,
194
+ "patch_size": 14,
195
+ "prefix": null,
196
+ "problem_type": null,
197
+ "projection_dim": 768,
198
+ "pruned_heads": {},
199
+ "remove_invalid_values": false,
200
+ "repetition_penalty": 1.0,
201
+ "return_dict": true,
202
+ "return_dict_in_generate": false,
203
+ "sep_token_id": null,
204
+ "suppress_tokens": null,
205
+ "task_specific_params": null,
206
+ "temperature": 1.0,
207
+ "tf_legacy_loss": false,
208
+ "tie_encoder_decoder": false,
209
+ "tie_word_embeddings": true,
210
+ "tokenizer_class": null,
211
+ "top_k": 50,
212
+ "top_p": 1.0,
213
+ "torch_dtype": null,
214
+ "torchscript": false,
215
+ "typical_p": 1.0,
216
+ "use_bfloat16": false,
217
+ "vocab_size": 32000
218
+ },
219
+ "vision_feature_layer": -2,
220
+ "vision_feature_select_strategy": "default"
221
+ }
222
+
223
+
224
+ [INFO|2024-12-01 18:24:23] tokenization_utils_base.py:2211 >> loading file tokenizer.model from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/tokenizer.model
225
+
226
+ [INFO|2024-12-01 18:24:23] tokenization_utils_base.py:2211 >> loading file tokenizer.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/tokenizer.json
227
+
228
+ [INFO|2024-12-01 18:24:23] tokenization_utils_base.py:2211 >> loading file added_tokens.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/added_tokens.json
229
+
230
+ [INFO|2024-12-01 18:24:23] tokenization_utils_base.py:2211 >> loading file special_tokens_map.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/special_tokens_map.json
231
+
232
+ [INFO|2024-12-01 18:24:23] tokenization_utils_base.py:2211 >> loading file tokenizer_config.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/tokenizer_config.json
233
+
234
+ [INFO|2024-12-01 18:24:23] tokenization_utils_base.py:2475 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
235
+
236
+ [INFO|2024-12-01 18:24:24] processing_utils.py:695 >> loading configuration file processor_config.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/processor_config.json
237
+
238
+ [INFO|2024-12-01 18:24:24] image_processing_base.py:375 >> loading configuration file preprocessor_config.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/preprocessor_config.json
239
+
240
+ [INFO|2024-12-01 18:24:24] image_processing_base.py:429 >> Image processor LlavaNextVideoImageProcessor {
241
+ "crop_size": {
242
+ "height": 336,
243
+ "width": 336
244
+ },
245
+ "do_center_crop": true,
246
+ "do_convert_rgb": true,
247
+ "do_normalize": true,
248
+ "do_pad": true,
249
+ "do_rescale": true,
250
+ "do_resize": true,
251
+ "image_grid_pinpoints": [
252
+ [
253
+ 336,
254
+ 672
255
+ ],
256
+ [
257
+ 672,
258
+ 336
259
+ ],
260
+ [
261
+ 672,
262
+ 672
263
+ ],
264
+ [
265
+ 1008,
266
+ 336
267
+ ],
268
+ [
269
+ 336,
270
+ 1008
271
+ ]
272
+ ],
273
+ "image_mean": [
274
+ 0.48145466,
275
+ 0.4578275,
276
+ 0.40821073
277
+ ],
278
+ "image_processor_type": "LlavaNextVideoImageProcessor",
279
+ "image_std": [
280
+ 0.26862954,
281
+ 0.26130258,
282
+ 0.27577711
283
+ ],
284
+ "processor_class": "LlavaNextVideoProcessor",
285
+ "resample": 3,
286
+ "rescale_factor": 0.00392156862745098,
287
+ "size": {
288
+ "shortest_edge": 336
289
+ }
290
+ }
291
+
292
+
293
+ [INFO|2024-12-01 18:24:24] image_processing_base.py:375 >> loading configuration file preprocessor_config.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/preprocessor_config.json
294
+
295
+ [INFO|2024-12-01 18:24:24] image_processing_base.py:429 >> Image processor LlavaNextImageProcessor {
296
+ "crop_size": {
297
+ "height": 336,
298
+ "width": 336
299
+ },
300
+ "do_center_crop": true,
301
+ "do_convert_rgb": true,
302
+ "do_normalize": true,
303
+ "do_pad": true,
304
+ "do_rescale": true,
305
+ "do_resize": true,
306
+ "image_grid_pinpoints": [
307
+ [
308
+ 336,
309
+ 672
310
+ ],
311
+ [
312
+ 672,
313
+ 336
314
+ ],
315
+ [
316
+ 672,
317
+ 672
318
+ ],
319
+ [
320
+ 1008,
321
+ 336
322
+ ],
323
+ [
324
+ 336,
325
+ 1008
326
+ ]
327
+ ],
328
+ "image_mean": [
329
+ 0.48145466,
330
+ 0.4578275,
331
+ 0.40821073
332
+ ],
333
+ "image_processor_type": "LlavaNextImageProcessor",
334
+ "image_std": [
335
+ 0.26862954,
336
+ 0.26130258,
337
+ 0.27577711
338
+ ],
339
+ "processor_class": "LlavaNextVideoProcessor",
340
+ "resample": 3,
341
+ "rescale_factor": 0.00392156862745098,
342
+ "size": {
343
+ "shortest_edge": 336
344
+ }
345
+ }
346
+
347
+
348
+ [INFO|2024-12-01 18:24:25] tokenization_utils_base.py:2211 >> loading file tokenizer.model from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/tokenizer.model
349
+
350
+ [INFO|2024-12-01 18:24:25] tokenization_utils_base.py:2211 >> loading file tokenizer.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/tokenizer.json
351
+
352
+ [INFO|2024-12-01 18:24:25] tokenization_utils_base.py:2211 >> loading file added_tokens.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/added_tokens.json
353
+
354
+ [INFO|2024-12-01 18:24:25] tokenization_utils_base.py:2211 >> loading file special_tokens_map.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/special_tokens_map.json
355
+
356
+ [INFO|2024-12-01 18:24:25] tokenization_utils_base.py:2211 >> loading file tokenizer_config.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/tokenizer_config.json
357
+
358
+ [INFO|2024-12-01 18:24:25] tokenization_utils_base.py:2475 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
359
+
360
+ [INFO|2024-12-01 18:24:25] processing_utils.py:695 >> loading configuration file processor_config.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/processor_config.json
361
+
362
+ [WARNING|2024-12-01 18:24:25] processing_utils.py:1005 >> Some kwargs in processor config are unused and will not have any effect: num_additional_image_tokens.
363
+
364
+ [INFO|2024-12-01 18:24:25] processing_utils.py:755 >> Processor LlavaNextVideoProcessor:
365
+ - video_processor: LlavaNextVideoImageProcessor {
366
+ "crop_size": {
367
+ "height": 336,
368
+ "width": 336
369
+ },
370
+ "do_center_crop": true,
371
+ "do_convert_rgb": true,
372
+ "do_normalize": true,
373
+ "do_pad": true,
374
+ "do_rescale": true,
375
+ "do_resize": true,
376
+ "image_grid_pinpoints": [
377
+ [
378
+ 336,
379
+ 672
380
+ ],
381
+ [
382
+ 672,
383
+ 336
384
+ ],
385
+ [
386
+ 672,
387
+ 672
388
+ ],
389
+ [
390
+ 1008,
391
+ 336
392
+ ],
393
+ [
394
+ 336,
395
+ 1008
396
+ ]
397
+ ],
398
+ "image_mean": [
399
+ 0.48145466,
400
+ 0.4578275,
401
+ 0.40821073
402
+ ],
403
+ "image_processor_type": "LlavaNextVideoImageProcessor",
404
+ "image_std": [
405
+ 0.26862954,
406
+ 0.26130258,
407
+ 0.27577711
408
+ ],
409
+ "processor_class": "LlavaNextVideoProcessor",
410
+ "resample": 3,
411
+ "rescale_factor": 0.00392156862745098,
412
+ "size": {
413
+ "shortest_edge": 336
414
+ }
415
+ }
416
+
417
+ - image_processor: LlavaNextImageProcessor {
418
+ "crop_size": {
419
+ "height": 336,
420
+ "width": 336
421
+ },
422
+ "do_center_crop": true,
423
+ "do_convert_rgb": true,
424
+ "do_normalize": true,
425
+ "do_pad": true,
426
+ "do_rescale": true,
427
+ "do_resize": true,
428
+ "image_grid_pinpoints": [
429
+ [
430
+ 336,
431
+ 672
432
+ ],
433
+ [
434
+ 672,
435
+ 336
436
+ ],
437
+ [
438
+ 672,
439
+ 672
440
+ ],
441
+ [
442
+ 1008,
443
+ 336
444
+ ],
445
+ [
446
+ 336,
447
+ 1008
448
+ ]
449
+ ],
450
+ "image_mean": [
451
+ 0.48145466,
452
+ 0.4578275,
453
+ 0.40821073
454
+ ],
455
+ "image_processor_type": "LlavaNextImageProcessor",
456
+ "image_std": [
457
+ 0.26862954,
458
+ 0.26130258,
459
+ 0.27577711
460
+ ],
461
+ "processor_class": "LlavaNextVideoProcessor",
462
+ "resample": 3,
463
+ "rescale_factor": 0.00392156862745098,
464
+ "size": {
465
+ "shortest_edge": 336
466
+ }
467
+ }
468
+
469
+ - tokenizer: LlamaTokenizerFast(name_or_path='llava-hf/LLaVA-NeXT-Video-7B-hf', vocab_size=32000, model_max_length=4096, is_fast=True, padding_side='left', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<unk>'}, clean_up_tokenization_spaces=False), added_tokens_decoder={
470
+ 0: AddedToken("<unk>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
471
+ 1: AddedToken("<s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
472
+ 2: AddedToken("</s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
473
+ 32000: AddedToken("<video>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
474
+ 32001: AddedToken("<image>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
475
+ }
476
+
477
+ {
478
+ "image_token": "<image>",
479
+ "patch_size": 14,
480
+ "processor_class": "LlavaNextVideoProcessor",
481
+ "video_token": "<video>",
482
+ "vision_feature_select_strategy": "default"
483
+ }
484
+
485
+
486
+ [INFO|2024-12-01 18:24:25] logging.py:157 >> Loading dataset merger500.json...
487
+
488
+ [WARNING|2024-12-01 18:24:25] processing_utils.py:1005 >> Some kwargs in processor config are unused and will not have any effect: num_additional_image_tokens.
489
+
490
+ [INFO|2024-12-01 18:24:27] logging.py:157 >> Loading dataset LLM_dataset(4o).json...
491
+
492
+ [INFO|2024-12-01 18:24:27] logging.py:157 >> Loading dataset LLM_dataset(4mini).json...
493
+
494
+ [INFO|2024-12-01 18:25:48] configuration_utils.py:679 >> loading configuration file config.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/config.json
495
+
496
+ [INFO|2024-12-01 18:25:48] configuration_utils.py:746 >> Model config LlavaNextVideoConfig {
497
+ "_name_or_path": "llava-hf/LLaVA-NeXT-Video-7B-hf",
498
+ "architectures": [
499
+ "LlavaNextVideoForConditionalGeneration"
500
+ ],
501
+ "ignore_index": -100,
502
+ "image_grid_pinpoints": [
503
+ [
504
+ 336,
505
+ 672
506
+ ],
507
+ [
508
+ 672,
509
+ 336
510
+ ],
511
+ [
512
+ 672,
513
+ 672
514
+ ],
515
+ [
516
+ 1008,
517
+ 336
518
+ ],
519
+ [
520
+ 336,
521
+ 1008
522
+ ]
523
+ ],
524
+ "image_seq_length": 576,
525
+ "image_token_index": 32001,
526
+ "model_type": "llava_next_video",
527
+ "projector_hidden_act": "gelu",
528
+ "spatial_pool_mode": "average",
529
+ "spatial_pool_out_channels": 1024,
530
+ "spatial_pool_stride": 2,
531
+ "text_config": {
532
+ "_attn_implementation_autoset": false,
533
+ "_name_or_path": "lmsys/vicuna-7b-v1.5",
534
+ "add_cross_attention": false,
535
+ "architectures": [
536
+ "LlamaForCausalLM"
537
+ ],
538
+ "attention_bias": false,
539
+ "attention_dropout": 0.0,
540
+ "bad_words_ids": null,
541
+ "begin_suppress_tokens": null,
542
+ "bos_token_id": 1,
543
+ "chunk_size_feed_forward": 0,
544
+ "cross_attention_hidden_size": null,
545
+ "decoder_start_token_id": null,
546
+ "diversity_penalty": 0.0,
547
+ "do_sample": false,
548
+ "early_stopping": false,
549
+ "encoder_no_repeat_ngram_size": 0,
550
+ "eos_token_id": 2,
551
+ "exponential_decay_length_penalty": null,
552
+ "finetuning_task": null,
553
+ "forced_bos_token_id": null,
554
+ "forced_eos_token_id": null,
555
+ "head_dim": 128,
556
+ "hidden_act": "silu",
557
+ "hidden_size": 4096,
558
+ "id2label": {
559
+ "0": "LABEL_0",
560
+ "1": "LABEL_1"
561
+ },
562
+ "initializer_range": 0.02,
563
+ "intermediate_size": 11008,
564
+ "is_decoder": false,
565
+ "is_encoder_decoder": false,
566
+ "label2id": {
567
+ "LABEL_0": 0,
568
+ "LABEL_1": 1
569
+ },
570
+ "length_penalty": 1.0,
571
+ "max_length": 20,
572
+ "max_position_embeddings": 4096,
573
+ "min_length": 0,
574
+ "mlp_bias": false,
575
+ "model_type": "llama",
576
+ "no_repeat_ngram_size": 0,
577
+ "num_attention_heads": 32,
578
+ "num_beam_groups": 1,
579
+ "num_beams": 1,
580
+ "num_hidden_layers": 32,
581
+ "num_key_value_heads": 32,
582
+ "num_return_sequences": 1,
583
+ "output_attentions": false,
584
+ "output_hidden_states": false,
585
+ "output_scores": false,
586
+ "pad_token_id": 0,
587
+ "prefix": null,
588
+ "pretraining_tp": 1,
589
+ "problem_type": null,
590
+ "pruned_heads": {},
591
+ "remove_invalid_values": false,
592
+ "repetition_penalty": 1.0,
593
+ "return_dict": true,
594
+ "return_dict_in_generate": false,
595
+ "rms_norm_eps": 1e-05,
596
+ "rope_scaling": {
597
+ "factor": 2.5,
598
+ "rope_type": "linear",
599
+ "type": "linear"
600
+ },
601
+ "rope_theta": 10000.0,
602
+ "sep_token_id": null,
603
+ "suppress_tokens": null,
604
+ "task_specific_params": null,
605
+ "temperature": 1.0,
606
+ "tf_legacy_loss": false,
607
+ "tie_encoder_decoder": false,
608
+ "tie_word_embeddings": false,
609
+ "tokenizer_class": null,
610
+ "top_k": 50,
611
+ "top_p": 1.0,
612
+ "torch_dtype": "float16",
613
+ "torchscript": false,
614
+ "type": "linear",
615
+ "typical_p": 1.0,
616
+ "use_bfloat16": false,
617
+ "use_cache": true,
618
+ "vocab_size": 32064
619
+ },
620
+ "tie_word_embeddings": false,
621
+ "torch_dtype": "bfloat16",
622
+ "transformers_version": "4.46.1",
623
+ "use_image_newline_parameter": true,
624
+ "video_seq_length": 288,
625
+ "video_token_index": 32000,
626
+ "vision_config": {
627
+ "_attn_implementation_autoset": false,
628
+ "_name_or_path": "",
629
+ "add_cross_attention": false,
630
+ "architectures": null,
631
+ "attention_dropout": 0.0,
632
+ "bad_words_ids": null,
633
+ "begin_suppress_tokens": null,
634
+ "bos_token_id": null,
635
+ "chunk_size_feed_forward": 0,
636
+ "cross_attention_hidden_size": null,
637
+ "decoder_start_token_id": null,
638
+ "diversity_penalty": 0.0,
639
+ "do_sample": false,
640
+ "early_stopping": false,
641
+ "encoder_no_repeat_ngram_size": 0,
642
+ "eos_token_id": null,
643
+ "exponential_decay_length_penalty": null,
644
+ "finetuning_task": null,
645
+ "forced_bos_token_id": null,
646
+ "forced_eos_token_id": null,
647
+ "hidden_act": "quick_gelu",
648
+ "hidden_size": 1024,
649
+ "id2label": {
650
+ "0": "LABEL_0",
651
+ "1": "LABEL_1"
652
+ },
653
+ "image_size": 336,
654
+ "initializer_factor": 1.0,
655
+ "initializer_range": 0.02,
656
+ "intermediate_size": 4096,
657
+ "is_decoder": false,
658
+ "is_encoder_decoder": false,
659
+ "label2id": {
660
+ "LABEL_0": 0,
661
+ "LABEL_1": 1
662
+ },
663
+ "layer_norm_eps": 1e-05,
664
+ "length_penalty": 1.0,
665
+ "max_length": 20,
666
+ "min_length": 0,
667
+ "model_type": "clip_vision_model",
668
+ "no_repeat_ngram_size": 0,
669
+ "num_attention_heads": 16,
670
+ "num_beam_groups": 1,
671
+ "num_beams": 1,
672
+ "num_channels": 3,
673
+ "num_hidden_layers": 24,
674
+ "num_return_sequences": 1,
675
+ "output_attentions": false,
676
+ "output_hidden_states": false,
677
+ "output_scores": false,
678
+ "pad_token_id": null,
679
+ "patch_size": 14,
680
+ "prefix": null,
681
+ "problem_type": null,
682
+ "projection_dim": 768,
683
+ "pruned_heads": {},
684
+ "remove_invalid_values": false,
685
+ "repetition_penalty": 1.0,
686
+ "return_dict": true,
687
+ "return_dict_in_generate": false,
688
+ "sep_token_id": null,
689
+ "suppress_tokens": null,
690
+ "task_specific_params": null,
691
+ "temperature": 1.0,
692
+ "tf_legacy_loss": false,
693
+ "tie_encoder_decoder": false,
694
+ "tie_word_embeddings": true,
695
+ "tokenizer_class": null,
696
+ "top_k": 50,
697
+ "top_p": 1.0,
698
+ "torch_dtype": null,
699
+ "torchscript": false,
700
+ "typical_p": 1.0,
701
+ "use_bfloat16": false,
702
+ "vocab_size": 32000
703
+ },
704
+ "vision_feature_layer": -2,
705
+ "vision_feature_select_strategy": "default"
706
+ }
707
+
708
+
709
+ [INFO|2024-12-01 18:25:48] logging.py:157 >> Quantizing model to 4 bit with bitsandbytes.
710
+
711
+ [INFO|2024-12-01 18:25:48] modeling_utils.py:3937 >> loading weights file model.safetensors from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/model.safetensors.index.json
712
+
713
+ [INFO|2024-12-01 18:25:48] modeling_utils.py:1670 >> Instantiating LlavaNextVideoForConditionalGeneration model under default dtype torch.bfloat16.
714
+
715
+ [INFO|2024-12-01 18:25:48] configuration_utils.py:1096 >> Generate config GenerationConfig {}
716
+
717
+
718
+ [INFO|2024-12-01 18:25:48] modeling_utils.py:1670 >> Instantiating CLIPVisionModel model under default dtype torch.bfloat16.
719
+
720
+ [INFO|2024-12-01 18:25:48] modeling_utils.py:1670 >> Instantiating LlamaForCausalLM model under default dtype torch.bfloat16.
721
+
722
+ [INFO|2024-12-01 18:25:48] configuration_utils.py:1096 >> Generate config GenerationConfig {
723
+ "bos_token_id": 1,
724
+ "eos_token_id": 2,
725
+ "pad_token_id": 0
726
+ }
727
+
728
+
729
+ [INFO|2024-12-01 18:25:52] modeling_utils.py:4800 >> All model checkpoint weights were used when initializing LlavaNextVideoForConditionalGeneration.
730
+
731
+
732
+ [INFO|2024-12-01 18:25:52] modeling_utils.py:4808 >> All the weights of LlavaNextVideoForConditionalGeneration were initialized from the model checkpoint at llava-hf/LLaVA-NeXT-Video-7B-hf.
733
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaNextVideoForConditionalGeneration for predictions without further training.
734
+
735
+ [INFO|2024-12-01 18:25:52] configuration_utils.py:1051 >> loading configuration file generation_config.json from cache at /home/dl/.cache/huggingface/hub/models--llava-hf--LLaVA-NeXT-Video-7B-hf/snapshots/b3b624d0915bb487ef1abb15255aaa2cd5581205/generation_config.json
736
+
737
+ [INFO|2024-12-01 18:25:52] configuration_utils.py:1096 >> Generate config GenerationConfig {
738
+ "bos_token_id": 1,
739
+ "eos_token_id": 2,
740
+ "pad_token_id": 0
741
+ }
742
+
743
+
744
+ [INFO|2024-12-01 18:25:53] logging.py:157 >> Gradient checkpointing enabled.
745
+
746
+ [INFO|2024-12-01 18:25:53] logging.py:157 >> Casting multimodal projector outputs in torch.bfloat16.
747
+
748
+ [INFO|2024-12-01 18:25:53] logging.py:157 >> Using FlashAttention-2 for faster training and inference.
749
+
750
+ [INFO|2024-12-01 18:25:53] logging.py:157 >> Upcasting trainable params to float32.
751
+
752
+ [INFO|2024-12-01 18:25:53] logging.py:157 >> Fine-tuning method: LoRA
753
+
754
+ [INFO|2024-12-01 18:25:53] logging.py:157 >> Found linear modules: down_proj,v_proj,k_proj,q_proj,up_proj,o_proj,gate_proj
755
+
756
+ [INFO|2024-12-01 18:25:53] logging.py:157 >> trainable params: 19,988,480 || all params: 7,083,419,648 || trainable%: 0.2822
757
+
758
+ [INFO|2024-12-01 18:25:53] trainer.py:698 >> Using auto half precision backend
759
+
760
+ [INFO|2024-12-01 18:25:55] trainer.py:2313 >> ***** Running training *****
761
+
762
+ [INFO|2024-12-01 18:25:55] trainer.py:2314 >> Num examples = 714
763
+
764
+ [INFO|2024-12-01 18:25:55] trainer.py:2315 >> Num Epochs = 1
765
+
766
+ [INFO|2024-12-01 18:25:55] trainer.py:2316 >> Instantaneous batch size per device = 2
767
+
768
+ [INFO|2024-12-01 18:25:55] trainer.py:2319 >> Total train batch size (w. parallel, distributed & accumulation) = 32
769
+
770
+ [INFO|2024-12-01 18:25:55] trainer.py:2320 >> Gradient Accumulation steps = 8
771
+
772
+ [INFO|2024-12-01 18:25:55] trainer.py:2321 >> Total optimization steps = 22
773
+
774
+ [INFO|2024-12-01 18:25:55] trainer.py:2322 >> Number of trainable parameters = 19,988,480
775
+
776
+ [WARNING|2024-12-01 18:25:59] logging.py:168 >> `use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.
777
+
778
+ [INFO|2024-12-01 18:28:23] logging.py:157 >> {'loss': 0.8615, 'learning_rate': 2.5000e-06, 'epoch': 0.22}
779
+
780
+ [INFO|2024-12-01 18:30:41] logging.py:157 >> {'loss': 0.8940, 'learning_rate': 5.0000e-06, 'epoch': 0.45}
781
+
782
+ [INFO|2024-12-01 18:33:04] logging.py:157 >> {'loss': 0.8808, 'learning_rate': 7.5000e-06, 'epoch': 0.67}
783
+
784
+ [INFO|2024-12-01 18:35:22] logging.py:157 >> {'loss': 0.8746, 'learning_rate': 1.0000e-05, 'epoch': 0.89}
785
+
786
+ [INFO|2024-12-01 18:36:12] trainer.py:3801 >> Saving model checkpoint to saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/checkpoint-22
787
+
788
+ [INFO|2024-12-01 18:36:13] tokenization_utils_base.py:2646 >> tokenizer config file saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/checkpoint-22/tokenizer_config.json
789
+
790
+ [INFO|2024-12-01 18:36:13] tokenization_utils_base.py:2655 >> Special tokens file saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/checkpoint-22/special_tokens_map.json
791
+
792
+ [INFO|2024-12-01 18:36:13] image_processing_base.py:258 >> Image processor saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/checkpoint-22/preprocessor_config.json
793
+
794
+ [INFO|2024-12-01 18:36:13] image_processing_base.py:258 >> Image processor saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/checkpoint-22/preprocessor_config.json
795
+
796
+ [INFO|2024-12-01 18:36:13] tokenization_utils_base.py:2646 >> tokenizer config file saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/checkpoint-22/tokenizer_config.json
797
+
798
+ [INFO|2024-12-01 18:36:13] tokenization_utils_base.py:2655 >> Special tokens file saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/checkpoint-22/special_tokens_map.json
799
+
800
+ [INFO|2024-12-01 18:36:13] processing_utils.py:541 >> chat template saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/checkpoint-22/chat_template.json
801
+
802
+ [INFO|2024-12-01 18:36:13] processing_utils.py:547 >> processor saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/checkpoint-22/processor_config.json
803
+
804
+ [INFO|2024-12-01 18:36:13] trainer.py:2584 >>
805
+
806
+ Training completed. Do not forget to share your model on huggingface.co/models =)
807
+
808
+
809
+
810
+ [INFO|2024-12-01 18:36:13] image_processing_base.py:258 >> Image processor saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/preprocessor_config.json
811
+
812
+ [INFO|2024-12-01 18:36:13] image_processing_base.py:258 >> Image processor saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/preprocessor_config.json
813
+
814
+ [INFO|2024-12-01 18:36:13] tokenization_utils_base.py:2646 >> tokenizer config file saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/tokenizer_config.json
815
+
816
+ [INFO|2024-12-01 18:36:13] tokenization_utils_base.py:2655 >> Special tokens file saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/special_tokens_map.json
817
+
818
+ [INFO|2024-12-01 18:36:14] processing_utils.py:541 >> chat template saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/chat_template.json
819
+
820
+ [INFO|2024-12-01 18:36:14] processing_utils.py:547 >> processor saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/processor_config.json
821
+
822
+ [INFO|2024-12-01 18:36:14] trainer.py:3801 >> Saving model checkpoint to saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24
823
+
824
+ [INFO|2024-12-01 18:36:15] tokenization_utils_base.py:2646 >> tokenizer config file saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/tokenizer_config.json
825
+
826
+ [INFO|2024-12-01 18:36:15] tokenization_utils_base.py:2655 >> Special tokens file saved in saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24/special_tokens_map.json
827
+
828
+ [WARNING|2024-12-01 18:36:15] logging.py:162 >> No metric eval_loss to plot.
829
+
830
+ [WARNING|2024-12-01 18:36:15] logging.py:162 >> No metric eval_accuracy to plot.
831
+
832
+ [INFO|2024-12-01 18:36:15] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields:
833
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
834
+
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab66602d7e6c10eee8866ffc8c6b4541b799bb1c62eb8be9713bd239d7fe2942
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "<video>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<image>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ }
46
+ },
47
+ "bos_token": "<s>",
48
+ "chat_template": "{% set system_message = 'A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user\\'s questions.' %}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ 'USER: ' + content + ' ASSISTANT:' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
49
+ "clean_up_tokenization_spaces": false,
50
+ "eos_token": "</s>",
51
+ "extra_special_tokens": {
52
+ "image_token": "<image>",
53
+ "video_token": "<video>"
54
+ },
55
+ "image_token": "<image>",
56
+ "legacy": false,
57
+ "model_max_length": 4096,
58
+ "pad_token": "<unk>",
59
+ "padding_side": "right",
60
+ "processor_class": "LlavaNextVideoProcessor",
61
+ "sp_model_kwargs": {},
62
+ "spaces_between_special_tokens": false,
63
+ "split_special_tokens": false,
64
+ "tokenizer_class": "LlamaTokenizer",
65
+ "unk_token": "<unk>",
66
+ "use_default_system_prompt": false,
67
+ "video_token": "<video>"
68
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9832402234636871,
3
+ "total_flos": 8.043290589292134e+16,
4
+ "train_loss": 0.8802601207386364,
5
+ "train_runtime": 618.3986,
6
+ "train_samples_per_second": 1.155,
7
+ "train_steps_per_second": 0.036
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {"current_steps": 5, "total_steps": 22, "loss": 0.8615, "lr": 2.5e-06, "epoch": 0.22346368715083798, "percentage": 22.73, "elapsed_time": "0:02:28", "remaining_time": "0:08:24"}
2
+ {"current_steps": 10, "total_steps": 22, "loss": 0.894, "lr": 5e-06, "epoch": 0.44692737430167595, "percentage": 45.45, "elapsed_time": "0:04:46", "remaining_time": "0:05:43"}
3
+ {"current_steps": 15, "total_steps": 22, "loss": 0.8808, "lr": 7.5e-06, "epoch": 0.6703910614525139, "percentage": 68.18, "elapsed_time": "0:07:08", "remaining_time": "0:03:20"}
4
+ {"current_steps": 20, "total_steps": 22, "loss": 0.8746, "lr": 1e-05, "epoch": 0.8938547486033519, "percentage": 90.91, "elapsed_time": "0:09:27", "remaining_time": "0:00:56"}
5
+ {"current_steps": 22, "total_steps": 22, "epoch": 0.9832402234636871, "percentage": 100.0, "elapsed_time": "0:10:18", "remaining_time": "0:00:00"}
trainer_state.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9832402234636871,
5
+ "eval_steps": 500,
6
+ "global_step": 22,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.22346368715083798,
13
+ "grad_norm": 0.4495355188846588,
14
+ "learning_rate": 2.5e-06,
15
+ "loss": 0.8615,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.44692737430167595,
20
+ "grad_norm": 0.49592095613479614,
21
+ "learning_rate": 5e-06,
22
+ "loss": 0.894,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.6703910614525139,
27
+ "grad_norm": 0.47344380617141724,
28
+ "learning_rate": 7.5e-06,
29
+ "loss": 0.8808,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.8938547486033519,
34
+ "grad_norm": 0.5614600777626038,
35
+ "learning_rate": 1e-05,
36
+ "loss": 0.8746,
37
+ "step": 20
38
+ }
39
+ ],
40
+ "logging_steps": 5,
41
+ "max_steps": 22,
42
+ "num_input_tokens_seen": 0,
43
+ "num_train_epochs": 1,
44
+ "save_steps": 100,
45
+ "stateful_callbacks": {
46
+ "TrainerControl": {
47
+ "args": {
48
+ "should_epoch_stop": false,
49
+ "should_evaluate": false,
50
+ "should_log": false,
51
+ "should_save": true,
52
+ "should_training_stop": true
53
+ },
54
+ "attributes": {}
55
+ }
56
+ },
57
+ "total_flos": 8.043290589292134e+16,
58
+ "train_batch_size": 2,
59
+ "trial_name": null,
60
+ "trial_params": null
61
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4458e5e72517233363af05f835b35082429196f135ba58f1802787df1f5a0da
3
+ size 7032
training_args.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ bf16: true
2
+ cutoff_len: 4096
3
+ dataset: merger,LLM_dataset(4o),LLM_dataset(4mini)
4
+ dataset_dir: /media/dl/7DC4-B1CE/500_video
5
+ ddp_timeout: 180000000
6
+ deepspeed: cache/ds_z2_config.json
7
+ do_train: true
8
+ finetuning_type: lora
9
+ flash_attn: fa2
10
+ gradient_accumulation_steps: 8
11
+ learning_rate: 5.0e-05
12
+ logging_steps: 5
13
+ lora_alpha: 16
14
+ lora_dropout: 0
15
+ lora_rank: 8
16
+ lora_target: all
17
+ lr_scheduler_type: cosine
18
+ max_grad_norm: 1.0
19
+ max_samples: 100000
20
+ model_name_or_path: llava-hf/LLaVA-NeXT-Video-7B-hf
21
+ num_train_epochs: 1.0
22
+ optim: adamw_torch
23
+ output_dir: saves/LLaVA-NeXT-Video-7B-Chat/lora/train_2024-12-01-18-22-24
24
+ packing: false
25
+ per_device_train_batch_size: 2
26
+ plot_loss: true
27
+ preprocessing_num_workers: 16
28
+ quantization_bit: 4
29
+ quantization_method: bitsandbytes
30
+ report_to: none
31
+ save_steps: 100
32
+ stage: sft
33
+ template: llava_next_video
34
+ warmup_steps: 100
training_loss.png ADDED
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)