jeanpoll commited on
Commit
12cca13
·
1 Parent(s): d1834bb

initial commit

Browse files
Files changed (8) hide show
  1. README.md +120 -0
  2. config.json +40 -0
  3. merges.txt +0 -0
  4. pytorch_model.bin +3 -0
  5. results.csv +6 -0
  6. special_tokens_map.json +1 -0
  7. tokenizer_config.json +1 -0
  8. vocab.json +0 -0
README.md ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - conll2003
5
+ widget:
6
+ - text: "My name is jean-baptiste and I live in montreal"
7
+ - text: "My name is clara and I live in berkeley, california."
8
+ - text: "My name is wolfgang and I live in berlin"
9
+
10
+ ---
11
+
12
+ # roberta-large-ner: model fine-tuned from roberta-large for NER task
13
+
14
+ ## Introduction
15
+
16
+ [roberta-large-ner] is a NER model that was fine-tuned from roberta-large on conll2003 dataset.
17
+ Model was validated on emails/chat data and outperformed other models on this type of data specifically.
18
+ In particular the model seems to work better on entity that don't start with an upper case.
19
+
20
+
21
+ ## Training data
22
+
23
+ Training data was classified as follow:
24
+
25
+ Abbreviation|Description
26
+ -|-
27
+ O| Outside of a named entity
28
+ MISC | Miscellaneous entity
29
+ PER | Person’s name
30
+ ORG | Organization
31
+ LOC | Location
32
+
33
+ In order to simplify, the prefix B- or I- from original conll2003 was removed.
34
+ I used the train and test dataset from original conll2003 for training and the "validation" dataset for validation. This resulted in a dataset of size:
35
+ Train | 17494
36
+ Validation | 3250
37
+
38
+ ## How to use camembert-ner with HuggingFace
39
+
40
+ ##### Load camembert-ner and its sub-word tokenizer :
41
+
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
44
+
45
+ tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner")
46
+ model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner")
47
+
48
+
49
+ ##### Process text sample (from wikipedia)
50
+
51
+ from transformers import pipeline
52
+
53
+ nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
54
+ nlp("Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne to develop and sell Wozniak's Apple I personal computer")
55
+
56
+
57
+ [{'entity_group': 'ORG',
58
+ 'score': 0.99381506,
59
+ 'word': ' Apple',
60
+ 'start': 0,
61
+ 'end': 5},
62
+ {'entity_group': 'PER',
63
+ 'score': 0.99970853,
64
+ 'word': ' Steve Jobs',
65
+ 'start': 29,
66
+ 'end': 39},
67
+ {'entity_group': 'PER',
68
+ 'score': 0.99981767,
69
+ 'word': ' Steve Wozniak',
70
+ 'start': 41,
71
+ 'end': 54},
72
+ {'entity_group': 'PER',
73
+ 'score': 0.99956465,
74
+ 'word': ' Ronald Wayne',
75
+ 'start': 59,
76
+ 'end': 71},
77
+ {'entity_group': 'PER',
78
+ 'score': 0.9997918,
79
+ 'word': ' Wozniak',
80
+ 'start': 92,
81
+ 'end': 99},
82
+ {'entity_group': 'MISC',
83
+ 'score': 0.99956393,
84
+ 'word': ' Apple I',
85
+ 'start': 102,
86
+ 'end': 109}]
87
+ ```
88
+
89
+
90
+ ## Model performances
91
+
92
+ Model performances computed on conll2003 validation dataset (computed on the tokens predictions)
93
+ ```
94
+ entity | precision | recall | f1
95
+ - | - | - | -
96
+ PER | 0.9914 | 0.9927 | 0.9920
97
+ ORG | 0.9627 | 0.9661 | 0.9644
98
+ LOC | 0.9795 | 0.9862 | 0.9828
99
+ MISC | 0.9292 | 0.9262 | 0.9277
100
+ Overall | 0.9740 | 0.9766 | 0.9753
101
+ ```
102
+
103
+ On private dataset (email, chat, informal discussion), computed on word predictions:
104
+ ```
105
+ entity | precision | recall | f1
106
+ - | - | - | -
107
+ PER | 0.8823 | 0.9116 | 0.8967
108
+ ORG | 0.7694 | 0.7292 | 0.7487
109
+ LOC | 0.8619 | 0.7768 | 0.8171
110
+ ```
111
+
112
+ Spacy (en_core_web_trf-3.2.0) on the same private dataset was giving:
113
+ ```
114
+ entity | precision | recall | f1
115
+ - | - | - | -
116
+ PER | 0.9146 | 0.8287 | 0.8695
117
+ ORG | 0.7655 | 0.6437 | 0.6993
118
+ LOC | 0.8727 | 0.6180 | 0.7236
119
+ ```
120
+
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "roberta-large",
3
+ "architectures": [
4
+ "RobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "O",
15
+ "1": "LOC",
16
+ "2": "PER",
17
+ "3": "MISC",
18
+ "4": "ORG"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "label2id": {
23
+ "LOC": 1,
24
+ "MISC": 3,
25
+ "O": 0,
26
+ "ORG": 4,
27
+ "PER": 2
28
+ },
29
+ "layer_norm_eps": 1e-05,
30
+ "max_position_embeddings": 514,
31
+ "model_type": "roberta",
32
+ "num_attention_heads": 16,
33
+ "num_hidden_layers": 24,
34
+ "pad_token_id": 1,
35
+ "position_embedding_type": "absolute",
36
+ "transformers_version": "4.3.2",
37
+ "type_vocab_size": 1,
38
+ "use_cache": true,
39
+ "vocab_size": 50265
40
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e77a9cef4873df5643217b672929b3f8d3113b4a177bf593096d7b9db7e03f4
3
+ size 1417433007
results.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ,precision,recall,f1,entity
2
+ 0,0.9795249795249795,0.9862561847168774,0.9828790576633339,LOC
3
+ 1,0.9914318668643928,0.9927404718693285,0.9920857378400659,PER
4
+ 2,0.9292274446245273,0.9262250942380184,0.9277238403451995,MISC
5
+ 3,0.9627007895453308,0.966120218579235,0.9644074730669576,ORG
6
+ 4,0.9740825890497252,0.9766692954784437,0.9753719894698967,Overall
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "add_prefix_space": true, "errors": "replace", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": "<mask>", "model_max_length": 512, "name_or_path": "roberta-large"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff