Commit
·
f2e835f
1
Parent(s):
6cefe52
Update README.md
Browse files
README.md
CHANGED
@@ -1,54 +1,34 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
|
4 |
-
|
5 |
-
- generated_from_keras_callback
|
6 |
-
model-index:
|
7 |
-
- name: Jayveersinh-Raj/mpt5s-guj-grammar-2-3
|
8 |
-
results: []
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
12 |
probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5.6e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 197899, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 100, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
|
40 |
-
- training_precision: mixed_float16
|
41 |
-
|
42 |
-
### Training results
|
43 |
-
|
44 |
-
| Train Loss | Validation Loss | Epoch |
|
45 |
-
|:----------:|:---------------:|:-----:|
|
46 |
-
| 0.0777 | 0.0375 | 0 |
|
47 |
-
|
48 |
-
|
49 |
-
### Framework versions
|
50 |
-
|
51 |
-
- Transformers 4.32.1
|
52 |
-
- TensorFlow 2.12.0
|
53 |
-
- Datasets 2.14.4
|
54 |
-
- Tokenizers 0.13.3
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- gu
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
8 |
probably proofread and complete it, then remove this comment. -->
|
9 |
|
10 |
+
# Model description
|
11 |
+
The model is a mt5-small version of Gujarati Grammarly for spell correction given a sentence. Only this small version checkpoints are open source.
|
12 |
+
|
13 |
+
# Example usage:
|
14 |
+
from transformers import AutoTokenizer
|
15 |
+
import tensorflow as tf
|
16 |
+
from transformers import TFAutoModelForSeq2SeqLM
|
17 |
+
from transformers import create_optimizer
|
18 |
+
|
19 |
+
model_checkpoint = "Jayveersinh-Raj/guj-grammar-small"
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
21 |
+
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
22 |
+
|
23 |
+
sent="સુંદરકાંડના પ્રારંભમાં હનૂમાન બળવાન તો છે પણ સાથે-સાથે બુદ્ધિમાન પણ છે તેની રોચક ધર્મકથા છૈ"
|
24 |
+
inputs = tokenizer.encode(sent, return_tensors='tf')
|
25 |
+
output_ids = model.generate(inputs, max_length=128, num_beams = 4, early_stopping=True)
|
26 |
+
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
27 |
+
|
28 |
+
print("Generated Correction:")
|
29 |
+
print(output)
|
30 |
+
|
31 |
+
# Notes:
|
32 |
+
- Only supports Gujarati language for now
|
33 |
+
- Private dataset is used
|
34 |
+
- Only Tensorflow model is available for now, Pytorch checkpoints would be available soon.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|